4 resultados para Plant-cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Delta ubc13 and Delta mms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to report the antiproliferative effect of P. cupana treatment in Ehrlich Ascites Carcinoma (EAC)-bearing animals. Female mice were treated with three doses of powdered P. cupana (100, 1000 and 2000 mg/kg) for 7 days, injected with 10(5) EAC cells and treated up to day 21. In addition, a survival experiment was carried out with the same protocol. P. cupana decreased the ascites volume (p = 0.0120), cell number (p = 0.0004) and hemorrhage (p = 0.0054). This occurred through a G1-phase arrest (p < 0.01) induced by a decreased gene expression of Cyclin D1 in EAC cells. Furthermore, P. cupana significantly increased the survival of EAC-bearing animals (p = 0.0012). In conclusion, the P. cupana growth control effect in this model was correlated with a decreased expression of cyclin D1 and a G1 phase arrest. These results reinforce the cancer therapeutic potential of this Brazilian plant. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutathione S-transferase (GST) is a family of enzymes involved in the detoxification of electrophilic compounds. Different classes of GST are expressed in various organs, such as liver, lungs, stomach and others. Expression of GST can be modulated by diet components and plant-derived compounds. The importance of controlling GST expression is twofold: increasing levels of GST are beneficial to prevent deleterious effects of toxic and carcinogenic compounds, while inhibition of GST in tumor cells may help overcoming tumor resistance to chemotherapy. A screening of 16 plants used in the Brazilian pharmacopoeia tested their effects on GST expression in hepatocytes and Jurkat (leukemia) T-cells. The methanol extracts of five plants inhibited GST expression in hepatocytes. Three plants significantly inhibited and four others induced GST expression in Jurkat cells. Among these, the extracts of Bauhinia forficata Link. (Leguminosae) and Cecropia pachystachya Trec. (Urticaceae) inhibited GST expression at relatively low concentrations. With the exception of B. forficata, all plants were cytotoxic when administered to Jurkat cells at high doses (1 mg/mL) and some extracts were considerably cytotoxic even at lower concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that RsAFP2, a plant defensin that interacts with fungal glucosylceramides, is active against Candida albicans, inhibits to a lesser extent other Candida species, and is nontoxic to mammalian cells. Moreover, glucosylceramide levels in Candida species correlate with RsAFP2 sensitivity. We found RsAFP2 prophylactically effective against murine candidiasis.