37 resultados para Physical and optical properties of phthalocyanine
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).
Resumo:
This paper describes the structural evolution of Y(0.9)Er(0.1)Al(3)(BO(3))(4) nanopowders using two soft chemistry routes, the sol-gel and the polymeric precursor methods. Differential scanning calorimetry, differential thermal analyses, thermogravimetric analyses, X-ray diffraction, Fourier-transform infrared, and Raman spectroscopy techniques have been used to study the chemical reactions between 700 and 1200 degrees C temperature range. From both methods the Y(0.9)Er(0.1)Al(3)(BO(3))(4) (Er:YAB) solid solution was obtained almost pure when the powdered samples were heat treated at 1150 degrees C. Based on the results, a schematic phase formation diagram of Er:YAB crystalline solid solution was proposed for powders from each method. The Er:YAB solid solution could be optimized by adding a small amount of boron oxide in excess to the Er:YAB nominal composition. The nanoparticles are obtained around 210 nm. Photoluminescence emission spectrum of the Er:YAB nanocrystalline powders was measured on the infrared region and the Stark components of the (4)I(13/2) and (4)I(15/2) levels were determined. Finally, for the first time the Raman spectrum of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline phase is also presented. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes. and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth-containing cakes had similar texture characteristics to (he controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, clue to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, approximate to 1% per day during storage. After six days of storage, both C and RF amaranth-containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.
Resumo:
Ab initio calculations based on the density functional theory (DFT) are used to investigate the electronic and optical properties of sillimanite. The geometrical parameters of the unit cell, which contain 32 atoms, have been fully optimized and are in good agreement with the experimental data. The electronic structure shows that sillimanite has an indirect band gap of 5.18 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of sillimanite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s, Si-3s states play the major role in optical transitions as initial and final states, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electronic and optical properties of andalusite were studied by using quantum-mechanical calculations based on the density functional theory (DFT). The electronic structure shows that andalusite has a direct band gap of 5.01 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of andalusite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s states play a major role in optical transitions as initial and final states, respectively. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the optical and electrical characterization of a poly(p-phenylenevinylene) derivative: poly(2-dodecanoylsulfanyl-p-phenylenevinylene) (12COS-PPV). The electrical characterization was carried out on devices with the FTO\PEDOT:PSS\12COS-PPV/Al structure. Positive charge carrier mobility mu(h) of similar to 1.0 x 10(-6) cm(2) V(-1) s(-1) and barrier height phi of similar to 0.1 eV for positive charge carrier injection at the PEDOT:PSS/12COS-PPV interface were obtained using a thermionic injection model. FTO\PEDOT:P55\12COS-PPV/Ca devices exhibited green-yellow electroluminescence with maximum emission at lambda = 540 nm.
Resumo:
We investigate the impact of hydroxyl groups on the properties of C(60)(OH)(n) systems, with n = 1, 2, 3, 4, 8, 10, 16, 18, 24, 32 and 36 by means of first-principles density functional theory calculations. A detailed analysis from the local density of states has shown that adsorbed OH groups can induce dangling bonds in specific carbon atoms around the adsorption site. This increases the tendency to form polyhydroxylated fullerenes (fullerenols). The structural stability is analyzed in terms of the calculated formation enthalpy of each species. Also, a careful examination of the electron density of states for different fullerenols shows the possibility of synthesizing single molecules with tunable optical properties.
Resumo:
We present our theoretical results for the structural, electronic, vibrational and optical properties of MO(2) (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials.
Resumo:
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials. Ash occupies a prominent place among agro-industrial wastes, as it is derived from energy generation processes. Several types of ash have pozzolanic reactivity, and might be used as replacement material for cement, resulting in less energy waste and lower cost. This work aimed to investigate the physical and chemical properties of the cashew nut shell ash (CNSA), by performing the following measurement tests: chemical analysis, bulk density, specific mass, leaching and solubilization process, X-ray diffraction (XrD), specific surface area (BET) and pozzolanicity analysis with cement and lime. The results indicate a low reactivity of CNSA and the presence of heavy metals, alkalis and phenol.
Resumo:
We present a new climatology of atmospheric aerosols (primarily pyrogenic and biogenic) for the Brazilian tropics on the basis of a high-quality data set of spectral aerosol optical depth and directional sky radiance measurements from Aerosol Robotic Network (AERONET) Cimel Sun-sky radiometers at more than 15 sites distributed across the Amazon basin and adjacent Cerrado region. This network is the only long-term project (with a record including observations from more than 11 years at some locations) ever to have provided ground-based remotely-sensed column aerosol properties for this critical region. Distinctive features of the Amazonian area aerosol are presented by partitioning the region into three aerosol regimes: southern Amazonian forest, Cerrado, and northern Amazonian forest. The monitoring sites generally include measurements from the interval 1999-2006, but some sites have measurement records that date back to the initial days of the AERONET program in 1993. Seasonal time series of aerosol optical depth (AOD), angstrom ngstrom exponent, and columnar-averaged microphysical properties of the aerosol derived from sky radiance inversion techniques (single-scattering albedo, volume size distribution, fine mode fraction of AOD, etc.) are described and contrasted for the defined regions. During the wet season, occurrences of mineral dust penetrating deep into the interior were observed.