23 resultados para Phonon density of states
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.
Resumo:
Let omega be a factor state on the quasilocal algebra A of observables generated by a relativistic quantum field, which, in addition, satisfies certain regularity conditions [satisfied by ground states and the recently constructed thermal states of the P(phi)(2) theory]. We prove that there exist space- and time-translation invariant states, some of which are arbitrarily close to omega in the weak * topology, for which the time evolution is weakly asymptotically Abelian. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3372623]
Resumo:
We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.
Resumo:
Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
Objective: The study was designed to evaluate the effects of strength training (ST) on the bone mineral density (BMD) of postmenopausal women without hormone replacement therapy. Method: Subjects were randomized into untrained (UN) or trained (TR) groups. The TR group exercised three ST sessions per week for 24 weeks, and body composition, muscular strength, and BMD of the lumbar spine and femur neck were evaluated. Results: Body weight, mass index, and fat percentage were lower after 24 weeks only in the TR group (p < .05). SR also improved the one repetition maximum test in 46% and 39% of upper and lower limbs, respectively. The percentage of demineralization was higher in the UN group than in the TR group at the lumbar spine and femoral neck (p < .05). Discussion: Results indicated that 24 weeks of ST improved body composition parameters, increased muscular strength, and preserved BMD in postmenopausal women.
Resumo:
We report the first estimate of jaguar density in the semi-arid caatinga biome of north-eastern Brazil. During August-October 2007, in the Serra da Capivara National Park, we used camera traps to identify and count jaguars. Jaguar abundance and density were calculated using mark-recapture models. In a sampling effort of 1,249 camera-trap-nights we identified 12 adult jaguars and estimated an 2 abundance of 14 +/- 3.6 jaguars in an area of 524 km(2), i.e. a density of 2.67 +/- 1.00 jaguars per 100 km(2). This estimate is higher than in most other Brazilian biomes and indicates Serra da Capivara National Park as an important reserve for protecting jaguars in north-eastern Brazil.
Resumo:
The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.
Resumo:
We study the effect of thermal disorder on the electronic structure of one-dimensional poly-para-phenylene (PPP). In a real chain the torsion angles between rings are bound to be distributed over a range of values, which depend on temperature, and thus the chain is intrinsically disordered. In this study we simulated this kind of thermally induced off-diagonal disorder through the simple Huckel method. We base our Hamiltonian on ab initio results for the effect of temperature on torsion angles, and the effect of torsion angles on the energy gap. We analyze the electronic structure of 200-monomer-long chains focusing on the density of states, and the associated localization character (measured by the inverse participation ratio). Our results contrast with the usually assumed Gaussian-shaped density of localized states for disordered systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a detailed study of the capacitance spectra obtained from Au/doped-polyaniline/Al structures in the frequency domain (0.05 Hz-10 MHz), and at different temperatures (150-340 K) is carried out. The capacitance spectra behavior in semiconductors can be appropriately described by using abrupt cut-off models, since they assume that the electronic gap states that can follow the ac modulation have response times varying rapidly with a certain abscissa, which is dependent on both temperature and frequency. Two models based on the abrupt cut-off concept, formerly developed to describe inorganic semiconductor devices, have been used to analyze the capacitance spectra of devices based on doped polyaniline (PANI), which is a well-known polymeric semiconductor with innumerous potential technological applications. The application of these models allowed the determination of significant parameters, such as Debye length (approximate to 20 nm), position of bulk Fermi level (approximate to 320 meV) and associated density of states (approximate to 2x10(18) eV(-1) cm(-3)), width of the space charge region (approximate to 70 nm), built-in potential (approximate to 780 meV), and the gap states` distribution.
Resumo:
Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.
Resumo:
Persistent photoconductivity (PPC) in vanadyl phthalocyanine (VOPc) organic light-emitting diodes was investigated using photoconductive time response, photocurrent-voltage characteristics and charge extraction in linearly increasing voltage (CELIV) measurements. The experiments were performed in phase 1 (amorphous) and in phase 2 (crystalline) samples obtained by the physical vapour deposition (PVD) technique over ITO/glass electrodes with an Al covering electrode. The results indicated a photoconductivity with a long decay time in phase 1 VOPc described by a stretched exponential relaxation. The device showed a rectifying behaviour and the mobility of holes was measured by CELIV, following a dispersive model. In crystalline samples the PPC effect was not observed and the dominant mechanism of transport of holes was hopping in a Gaussian density of states.