13 resultados para Percolation threshold

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports on a distinct experimental procedure conceived to closely approach the question of development of crystallization in lead oxyfluoroborate glasses in the presence of an electric field. After proposing earlier that this phenomenon should involve occurrence of redox-type electrochemical reactions occurring at the electrodes. it was in fact recently shown that a direct contact of the glasses with both the cathode and anode revealed essential, provided that crystallization did not develop when ions migration to these electrodes became frustrated. The present study demonstrates that. even in Pt,Ag/Glass/YSZ:PbF(2)/Ag,Pt-type electrochemical cells subjected to electric field action, where YSZ:PbF(2) represents composite-like mixtures (formed by Y(2)O(3)-doped ZrO(2) and PbF(2)) placed between the glass and anode. crystallization was observable in given cases. In summary, supported by (micro)structural and electrical characterizations, clear evidence is provided here that, besides Pb(2+) reduction at the cathode, crystallization really involves simultaneous F(-) oxidation at the anode, completing thus the whole redox electrochemical reaction so far postulated. In these cases, F(-) migration to the anode was achievable following PbF(2) percolative-like paths through the YSZ:PbF(2) mixtures. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze a threshold contact process on a square lattice in which particles are created on empty sites with at least two neighboring particles and are annihilated spontaneously. We show by means of Monte Carlo simulations that the process undergoes a discontinuous phase transition at a definite value of the annihilation parameter, in accordance with the Gibbs phase rule, and that the discontinuous transition exhibits critical behavior. The simulations were performed by using boundary conditions in which the sites of the border of the lattice are permanently occupied by particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider independent edge percolation models on Z, with edge occupation probabilities. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys. 104: 547, 1986). The proof is based on multi-scale analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique to analyze fusion data is developed. From experimental cross sections and results of coupled-channel calculations a dimensionless function is constructed. In collisions of strongly bound nuclei this quantity is very close to a universal function of a variable related to the collision energy, whereas for weakly bound projectiles the effects of breakup coupling are measured by the deviations with respect to this universal function. This technique is applied to collisions of stable and unstable weakly bound isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report vibrational excitation (v(i) = 0 -> v(f) = 1) cross-sections for positron scattering by H(2) and model calculations for the (v(i) = 0 -> v(f) = 1) excitation of the C-C symmetric stretch mode of C(2)H(2). The Feshbach projection operator formalism was employed to vibrationally resolve the fixed-nuclei phase shifts obtained with the Schwinger multichannel method. The near threshold behavior of H(2) and C(2)H(2) significantly differ in the sense that no low lying singularity (either virtual or bound state) was found for the former, while a e(+)-acetylene virtual state was found at the equilibrium geometry (this virtual state becomes a bound state upon stretching the molecule). For C(2)H(2), we also performed model calculations comparing excitation cross-sections arising from virtual (-i kappa(0)) and bound (+i kappa(0)) states symmetrically located around the origin of the complex momentum plane (i.e. having the same kappa(0)). The virtual state is seen to significantly couple to vibrations, and similar cross-sections were obtained for shallow bound and virtual states. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the challenges in epidemiology is to account for the complex morphological structure of hosts such as plant roots, crop fields, farms, cells, animal habitats and social networks, when the transmission of infection occurs between contiguous hosts. Morphological complexity brings an inherent heterogeneity in populations and affects the dynamics of pathogen spread in such systems. We have analysed the influence of realistically complex host morphology on the threshold for invasion and epidemic outbreak in an SIR (susceptible-infected-recovered) epidemiological model. We show that disorder expressed in the host morphology and anisotropy reduces the probability of epidemic outbreak and thus makes the system more resistant to epidemic outbreaks. We obtain general analytical estimates for minimally safe bounds for an invasion threshold and then illustrate their validity by considering an example of host data for branching hosts (salamander retinal ganglion cells). Several spatial arrangements of hosts with different degrees of heterogeneity have been considered in order to separately analyse the role of shape complexity and anisotropy in the host population. The estimates for invasion threshold are linked to morphological characteristics of the hosts that can be used for determining the threshold for invasion in practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the asymptotic properties of the number of open paths of length n in an oriented rho-percolation model. We show that this number is e(n alpha(rho)(1+o(1))) as n ->infinity. The exponent alpha is deterministic, it can be expressed in terms of the free energy of a polymer model, and it can be explicitly computed in some range of the parameters. Moreover, in a restricted range of the parameters, we even show that the number of such paths is n(-1/2)We (n alpha(rho))(1+o(1)) for some nondegenerate random variable W. We build on connections with the model of directed polymers in random environment, and we use techniques and results developed in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a long-range percolation model whose dynamics describe the spreading of an infection on an infinite graph. We obtain a sufficient condition for phase transition and prove all upper bound for the critical parameter of spherically symmetric trees. (C) 2008 Elsevier B.V. All rights reserved.