159 resultados para Percolation flow problems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
Resumo:
A novel strategy for accomplishing zone trapping in flow analysis is proposed. The sample and the reagent solutions are simultaneously inserted into convergent carrier streams and the established zones merge together before reaching the detector, where the most concentrated portion of the entire sample zone is trapped. The main characteristics, potentialities and limitations of the strategy were critically evaluated in relation to an analogous flow system with zone stopping. When applied to the spectrophotometric determination of nitrite in river waters, the main figures of merit were maintained, exception made for the sampling frequency which was calculated as 189h(-1), about 32% higher relatively to the analogous system with zone stopping. The sample inserted volume can be increased up to 1.0 mL without affecting sampling frequency and no problems with pump heating or malfunctions were noted after 8-h operation of the system. In contrast to zone stopping, only a small portion of the sample zone is halted with zone trapping, leading to these beneficial effects. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present paper the dynamic solutions of two non-steady seepage problems are discussed. It is shown that the acceleration term in the equation of motion is important for a correct qualitative description of the flow.
Resumo:
A numerical algorithm for fully dynamical lubrication problems based on the Elrod-Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark`s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm. [DOI: 10.1115/1.3142903]
Resumo:
FUNDAMENTOS: O tratamento da hanseníase é definido pela classificação de pacientes em paucibacilares (PB) e multibacilares (MB). A OMS (Organização Mundial de Saúde) classifica os doentes de acordo com o número de lesões, mas Ridley-Jopling (R&J) utiliza também exames complementares, porém é de difícil utilização fora dos serviços de referência. Em 2003 foi desenvolvido um teste denominado ML-Flow, uma alternativa à sorologia por ELISA para auxiliar na classificação de pacientes em PB e MB e auxiliar na decisão terapêutica. OBJETIVOS: Observar a concordância entre o teste de ML-Flow e baciloscopia de linfa, exame já consagrado para detecção de MB. Analisar a utilidade do teste de ML-Flow em campo. MATERIAL E MÉTODOS: Estudo retrospectivo avaliando prontuário de 55 pacientes virgens de tratamento, diagnosticados como PB ou MB por R&J. Submetidos à baciloscopia e ao teste de ML-Flow. RESULTADOS: Nos MB, a baciloscopia foi positiva em 80% dos casos, o ML-flow foi positivo em 82,5%. Entre os PB, o ML-Flow foi positivo em 37,5% e a baciloscopia do esfregaço foi negativa em 100% dos casos. A concordância entre os resultados da baciloscopia do esfregaço e ML-Flow foi de 87,5%, kappa=0,59, p<0,001. CONCLUSÃO: Nenhum teste laboratorial é 100% sensível e específico para a correta classificação de todas as formas de hanseníase. O ML-Flow é um teste rápido, de fácil manuseio em campo, menos invasivo que a baciloscopia podendo ser útil para auxiliar na decisão terapêutica em locais de difícil acesso a serviços de referência.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
The fluid flow over bodies with complex geometry has been the subject of research of many scientists and widely explored experimentally and numerically. The present study proposes an Eulerian Immersed Boundary Method for flows simulations over stationary or moving rigid bodies. The proposed method allows the use of Cartesians Meshes. Here, two-dimensional simulations of fluid flow over stationary and oscillating circular cylinders were used for verification and validation. Four different cases were explored: the flow over a stationary cylinder, the flow over a cylinder oscillating in the flow direction, the flow over a cylinder oscillating in the normal flow direction, and a cylinder with angular oscillation. The time integration was carried out by a classical 4th order Runge-Kutta scheme, with a time step of the same order of distance between two consecutive points in x direction. High-order compact finite difference schemes were used to calculate spatial derivatives. The drag and lift coefficients, the lock-in phenomenon and vorticity contour plots were used for the verification and validation of the proposed method. The extension of the current method allowing the study of a body with different geometry and three-dimensional simulations is straightforward. The results obtained show a good agreement with both numerical and experimental results, encouraging the use of the proposed method.
Resumo:
PURPOSE: Compare parents' reports of youth problems (PRYP) with adolescent problems self-reports (APSR) pre/post behavioral treatment of nocturnal enuresis (NE) based on the use of a urine alarm. MATERIALS AND METHODS: Adolescents (N = 19) with mono-symptomatic (primary or secondary) nocturnal enuresis group treatment for 40 weeks. Discharge criterion was established as 8 weeks with consecutive dry nights. PRYP and APSR were scored by the Child Behavior Checklist (CBCL) and Youth Self-Report (YSR). RESULTS: Pre-treatment data: 1) Higher number of clinical cases based on parent report than on self-report for Internalizing Problems (IP) (13/19 vs. 4/19), Externalizing Problems (EP) (7/19 vs. 5/19) and Total Problem (TP) (11/19 vs. 5/19); 2) Mean PRYP scores for IP (60.8) and TP (61) were within the deviant range (T score ≥ 60); while mean PRYP scores for EP (57.4) and mean APSR scores (IP = 52.4, EP = 49.5, TP = 52.4) were within the normal range. Difference between PRYP' and APSR' scores was significant. Post treatment data: 1) Discharge for majority of the participants (16/19); 2) Reduction in the number of clinical cases on parental evaluation: 9/19 adolescents remained within clinical range for IP, 2/19 for EP, and 7/19 for TP. 3) All post-treatment mean scores were within the normal range; the difference between pre and post evaluation scores was significant for PRYP. CONCLUSIONS: The behavioral treatment based on the use of urine alarm is effective for adolescents with mono-symptomatic (primary and secondary) nocturnal enuresis. The study favors the hypothesis that enuresis is a cause, not a consequence, of other behavioral problems.
Resumo:
Electrochemical removals of color and organic load from solutions containing the dye reactive orange 16 (RO16) were performed in an electrochemical flow-cell, using a platinum working electrode. The influence of the process variables flow-rate, such as NaCl concentration, applied potential and solution pH, were studied. The best color removal achieved was 93% (λ = 493 nm) after 60 min at 2.2 V vs. RHE electrolysis, using 1.00 g L-1 NaCl as supporting electrolyte. The rises in the concentration of NaCl and applied potential increased the color removal rate. The best total organic carbon removal (57%) was obtained at 1.8 V, without the separating membrane, indicating that the ideal conditions for the color removal are not necessarily the same as those to remove the total organic carbon. The degradation efficiency decreased with the solution pH decrease.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
A bare graphite-polyurethane composite was evaluated as an amperometric flow injection detector in the determination of paracetamol (APAP) in pharmaceutical formulations. A linear analytical curve was observed in the 5.00 x 10-5 to 5.00 x 10-3 mol L-1 range with a minimum detectable net concentration of 18.9 µmol L-1 and 180 determinations h-1, after optimization of parameters such as the detection potential, sample loop volume, and carrier solution flow rate. Interference of ascorbic acid was observed, however, it was possible overcome the interference, reaching results that agreed with HPLC within 95% confidence level. These results showed that the graphite-polyurethane composite can be used as an amperometric detector for flow analysis in the determination of APAP.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.
Resumo:
The detection of minimal residual disease (MRD) is an important prognostic factor in childhood acute lymphoblastic leukemia (ALL) providing crucial information on the response to treatment and risk of relapse. However, the high cost of these techniques restricts their use in countries with limited resources. Thus, we prospectively studied the use of flow cytometry (FC) with a simplified 3-color assay and a limited antibody panel to detect MRD in the bone marrow (BM) and peripheral blood (PB) of children with ALL. BM and PB samples from 40 children with ALL were analyzed on days (d) 14 and 28 during induction and in weeks 24-30 of maintenance therapy. Detectable MRD was defined as > 0.01% cells expressing the aberrant immunophenotype as characterized at diagnosis among total events in the sample. A total of 87% of the patients had an aberrant immunophenotype at diagnosis. On d14, 56% of the BM and 43% of the PB samples had detectable MRD. On d28, this decreased to 45% and 31%, respectively. The percentage of cells with the aberrant phenotype was similar in both BM and PB in T-ALL but about 10 times higher in the BM of patients with B-cell-precursor ALL. Moreover, MRD was detected in the BM of patients in complete morphological remission (44% on d14 and 39% on d28). MRD was not significantly associated to gender, age, initial white blood cell count or cell lineage. This FC assay is feasible, affordable and readily applicable to detect MRD in centers with limited resources.