374 resultados para PRB EXPRESSION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Purpose: We tested whether the combination of 4 established cell cycle regulators (p53, pRB, p21 and p27) could improve the ability to predict clinical outcomes in a large multi-institutional collaboration of patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder. We also assessed whether the combination of molecular markers is superior to any individual biomarker. Materials and Methods: The study comprised 692 patients with pT3-4N0 or pTany Npositive urothelial carcinoma of the bladder treated with radical cystectomy and bilateral lymphadenectomy (median followup 5.3 years). Scoring was performed using advanced cell imaging and color detection software. The base model incorporated patient age, gender, stage, grade, lymphovascular invasion, number of lymph nodes removed, number of positive lymph nodes, concomitant carcinoma in situ and adjuvant chemotherapy. Results: Individual molecular markers did not improve the predictive accuracy for disease recurrence and cancer specific mortality. Combination of all 4 molecular markers into number of altered molecular markers resulted in significantly 1 higher predictive accuracy than any single biomarker (p < 0.001.). Moreover addition of number of altered molecular markers to the base model significantly improved the predictive accuracy for disease recurrence (3.9%, p < 0.001) and cancer specific mortality (4.3%, p < 0.001). Addition of number of altered molecular markers retained statistical significance for improving the prediction of clinical outcomes in the subgroup of patients with pT3N0 (280), pT4N0 (83) and pTany Npositive (329) disease (p < 0.001). Conclusions: While the status of individual molecular markers does not add sufficient value to outcome prediction in patients with advanced urothelial carcinoma of the bladder, combinations of molecular markers may improve molecular staging, prognostication and possibly prediction of response to therapy.
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Background Acral lentiginous melanoma (ALM) is a clinicopathologic subtype of cutaneous malignant melanoma. ALM is the most common type of melanoma amongst Asians, Africans, and patients with mixed ancestry. In Brazil, ALM comprises 10% of cutaneous melanoma. ALM develops on palmar, plantar, and subungual skin, and its biology is different from that of other cutaneous melanomas, where sunlight is the major known environmental determinant. Alterations and inactivation of the p16INK4 gene that encodes a specific inhibitor of cyclin-dependent kinase have been related to melanoma genesis and progression. Few studies, however, have addressed p16 expression in ALM. Methods In order to verify and compare p16 protein expression, 32 paraffin-embedded ALM specimens were subjected to a immunohistochemical technique using a monoclonal anti-p16 antibody. The tumors were classified according to thickness (up to 1.0 mm and thicker than 1.0 mm) and the presence of ulceration. Results Twenty-five (78%) ALMs displayed positive p16 protein expression: 21 of the 25 (84%) with a thickness of more than 1.0 mm, and four of the seven (57%) with a thickness of 1.0 mm or less. Thirteen of the 17 (76%) nonulcerated lesions and 12 of the 15 (80%) ulcerated lesions displayed positive p16 protein expression. Conclusion The data obtained suggest that p16 protein expression per se may not represent a marker of retinoblastoma protein (pRb) pathway disturbance in ALM tumorigenesis.
Resumo:
Acute expression of E7 oncogene from human papillomavirus (HPV) 16 or HPV18 is sufficient to overcome tumor necrosis factor (TNF)-alpha cytostatic effect on primary human keratinocytes. In the present study, we investigated the molecular basis of E7-induced TNF resistance through a comparative analysis of the effect of this cytokine on the proliferation and global gene expression of normal and E7-expressing keratinocytes. Using E7 functional mutants, we show that E7-induced TNF resistance correlates with its ability to mediate pRb degradation and cell transformation. On the other hand, this effect does not depend on E7 sequences required to override DNA damage-induced cell cycle arrest or extend keratinocyte life span. Furthermore, we identified a group of 66 genes whose expression pattern differs between normal and E7-expressing cells upon cytokine treatment. These genes are mainly involved in cell cycle regulation suggesting that their altered expression may contribute to sustained cell proliferation even in the presence of a cytostatic stimulus. Differential expression of TCN1 (transcobalamin I), IFI44 (Interferon-induced protein 44), HMGB2 (high-mobility group box 2) and FUS [Fusion (involved in t(12; 16) in malignant liposarcoma)] among other genes were further confirmed by western-blot and/or real-time polymerase chain reaction. Moreover, FUS upregulation was detected in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Further evaluation of the role of such genes in TNF resistance and HPVassociated disease development is warranted.
Resumo:
The aim of this study was to determine whether the presence of leprosy reactional episodes could be associated with chronic oral infection. Thirty-eight leprosy patients were selected and divided into 2 groups: group I - 19 leprosy patients with oral infections, and group II - 19 leprosy patients without oral infections. Ten patients without leprosy, but presenting oral infections, were assigned to the control group. Leprosy patients were classified according to Ridley and Jopling classification and reactional episodes of the erythema nodosum type or reversal reaction were identified by clinical and histopathological features associated with serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels. These analyses were performed immediately before and 7 days after the oral infection elimination. Patients from group I presenting oral infections reported clinical improvement of the symptoms of reactional episodes after dental treatment. Serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels did not differ significantly before and after dental treatment as determined by the Wilcoxon test (p>0.05). Comparison of the 2 groups showed statistically significant differences in IL-1 and IL-6 at baseline and in IL-1, IL-6 and IL-10 on the occasion of both collections 7 days after therapy. Serum IL-6 and IL-10 levels in group I differed significantly at baseline compared to control (Mann-Whitney test; p<0.05). These results suggest that oral infection could be involved as a maintenance factor in the pathogenesis of leprosy reactional episodes.
Resumo:
Human HOX genes encode transcription factors that act as master regulators of embryonic development. They are important in several processes such as cellular morphogenesis and differentiation. The HOXB5 gene in particular has been reported in some types of neoplasm, but not in oral cancer. OBJECTIVE: The present study investigated the expression of HOXB5 in oral squamous cell carcinoma (SCC) and in non-tumoral adjacent tissues, focusing on verifying its possible role as a broad tumor-associated gene and its association with histopathological and clinical (TNM) characteristics. MATERIAL AND METHODS: RT-PCR was performed to amplify HOXB5 mRNA in 15 OSCCs and adjacent non-tumoral epithelium. A possible association with TNM and histopathologic data was verifed by the chi-square and post-hoc t-test. RESULTS: HOXB5 was amplifed in 60% non-tumoral epithelium and in 93.3% carcinomas. No statistically signifcant differences were found regarding the HOXB5 mRNA expression and TNM or histological grade. CONCLUSION: HOXB5 is expressed in OSCCs and its role in cancer progression should be further investigated.
Resumo:
Vimentin is a cytoeskeletal intermediate filament protein commonly observed in mesenchymal cells; however, it can also be found in malignant epithelial cells. It is demonstrated in several carcinomas, such as those of the cervix, breast and bladder, in which it is widely used as a marker of the epithelial to mesenchymal transition that takes place during embryogenesis and metastasis. Vimentin is associated with tumors that show a high degree of invasiveness, being detected in invasion front cells. Its expression seems to be influenced by the tumor microenvironment. The aim of this study was to evaluate vimentin expression in head and neck squamous cell carcinoma (HNSCC) cell lines, and to investigate the contribution of the microenvironment to its expression. HNSCC cell lines (HN6, HN30 and HN31) and an immortalized nontumorigenic cell line (HaCaT) were submitted to a three-dimensional assay with Matrigel. Cytoplasmatic staining of the HN6 cell line cultured without Matrigel and of the HN30 and HN31 cell lines cultured with Matrigel was demonstrated through immunohistochemistry. Western Blotting revealed a significant decrease in vimentin expression for the HN6 cell line and a significant increase for the HN30 and HN31 cell lines cultured with Matrigel. The results suggest that vimentin can be expressed in HNSCC cells and its presence is influenced by the microenvironment of a tumor.
Resumo:
Oral carcinogenesis is a multi-step process. One possible step is the development of potentially malignant disorders known as leukoplakia and erytroplakia. The objective of this study was to use immunohistochemistry to analyze the patterns of expression of the cell-cycle regulatory proteins p53 and p16INK4a in potentially malignant disorders (PMD) of the oral mucosa (with varying degrees of dysplasia) and in oral squamous cell carcinomas (OSCC) to correlate them with the expression of telomerase (hTERT). Fifteen PMD and 30 OSCC tissue samples were analyzed. Additionally, 5 cases of oral epithelial hyperplasia (OEH) were added to analyze clinically altered mucosa presenting as histological hyperplasia without dysplasia. p53 positivity was observed in 93.3% of PMD, in 63.3% of OSCC and in 80% of OEH. Although there was no correlation between p53 expression and the grade of dysplasia, all cases with severe dysplasia presented p53 suprabasal immunoexpression. p16INK4a expression was observed in 26.7% of PMD, in 43.3% of OSCC and in 2 cases of OEH. The p16INK4a expression in OEH, PMD and OSCC was unable to differentiate non-dysplastic from dysplastic oral epithelium. hTERT positivity was observed in all samples of OEH and PMD and in 90% of OSCC. The high hTERT immunoexpression in all three lesions indicates that telomerase is present in clinically altered oral mucosa but does not differentiate hyperplastic from dysplastic oral epithelium. In PMD of the oral mucosa, the p53 immunoexpression changes according to the degree of dysplasia by mechanisms independent of p16INK4a and hTERT.
Resumo:
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
Exercise-induced vessel changes modulate arterial pressure (AP) in male spontaneously hypertensive rats (SHR). Vascular endothelial growth factor (VEGF) is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY) rats, 8-9 weeks (200-250 g). Rats were allocated to daily training or remained sedentary for 3 days (N = 23) or 13 weeks (N = 23). After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis) and non-locomotor skeletal muscles (temporalis) were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days) and (SHR = 141%, WKY = 122%, 13 weeks). SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg) that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36%) simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%). In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%), without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.