35 resultados para PARENTERAL LIPID EMULSIONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in (omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Methods: Twenty volunteers were recruited and blood was. collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). Results: OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. Conclusions: The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.
Resumo:
Abnormal surface expression of HLA-DR by leukocytes is associated with a poor prognosis in critical care patients. Critical care patients often receive total parenteral nutrition with lipid emulsion (LE). In this study we evaluated the influence of fish oil LE (FO) on human monocyte/macrophage (M phi) expression of surface HLA-DR under distinct activation states. Mononuclear leukocytes from the peripheral blood of healthy volunteers (n = 18) were cultured for 24 hours without LE (control) or with 3 different concentrations (0.1, 0.25, and 0.5%) of the follow LE: a) pure FO b) FO in association (1:1 v/v) with LE composed of 50% medium-chain trygliceride and 50% soybean oil (MCTSO), and c) pure MCTSO. The leukocytes were also submitted to different cell activation states, as determinate by INF-gamma addition time: no INF-gamma addition, 18 hours before, or at the time of LE addition. HLA-DR expression on M phi surface was evaluated by flow cytometry using specific monoclonal antibodies. In relation to controls (for 0.1%, 0.25%, and 0.5%: 100) FO decreased the expression of HLA-DR when added alone [in simultaneously-activated M phi, for 0.1%: 70 (59 +/- 73); for 0.25%: 51 (48 +/- 56); and for 0.5%: 52.5(50 +/- 58)] or in association with MCTSO [in simultaneously-activated M phi, for 0.1%: 50.5 (47 +/- 61); for 25%: 49 (45 +/- 52); and for 05 %: 51 (44 +/- 54) and in previously-activated M phi, for 1.0 % : 63 (44 +/- 88); for 0.25%: 70 (41 +/- 88); and for 0.5%: 59.5 (39 +/- 79)] in culture medium (Friedman p<0.05). In relation to controls (for 0.1%, 0.25%, and 0.5%: 100), FO did not influence the expression of these molecules on non-activated M phi [for 0.1 % : 87.5 (75 +/- 93); for 0.25%: 111 (98 +/- 118); and for 0.5%: 101.5 (84 +/- 113)]. Results show that parenteral FO modulates the expression of HLA-DR on human M phi surface accordingly to leukocyte activation state. Further clinical studies evaluating the ideal moment of fish oil LE infusion to modulate leukocyte functions may contribute to a better understanding of its immune modulatory properties.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.
Resumo:
Lipid emulsion (LE) containing medium/omega-6 long chain triglyceride-based emulsion (MCT/omega-6 LCT LE) has been recommended in the place of omega-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/omega-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/omega-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/omega-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/omega-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription.
Resumo:
Antioxidants probably play an important role in the etiology of type 2 diabetes (DM2). This study evaluated the effects of supplementation with lipoic acid (LA) and alpha-tocopherol on the lipid profile and insulin sensitivity of DM2 patients. A randomized, double-blind, placebo-controlled trial involving 102 DM2 patients divided into four groups to receive daily supplementation for 4 months with: 600 mg LA (n = 26); 800 mg alpha-tocopherol (n = 25); 800 mg alpha-tocopherol + 600 mg LA (n = 25); placebo (n = 26). Plasma alpha-tocopherol, lipid profile, glucose, insulin, and the HOMA index were determined before and after supplementation. Differences within and between groups were compared by ANOVA using Bonferroni correction. Student`s t-test was used to compare means of two independent variables. The vitamin E/total cholesterol ratio improved significantly in patients supplemented with vitamin E + LA and vitamin E alone (p <= 0.001). There were improvements of the lipid fractions in the groups receiving LA and vitamin E alone or in combination, and on the HOMA index in the LA group, but not significant. The results suggest that LA and vitamin E supplementation alone or in combination did not affect the lipid profile or insulin sensitivity of DM2 patients. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9% or 3.8%) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein Solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9% residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8% in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The antioxidant activity of mate tea, the roasted product derived from yerba mate (Ilex paraguarienis), was observed in vitro and in animal models, but studies in humans are lacking. The aim of this study was to investigate the effects of mate tea supplementation on plasma susceptibility to oxidation and on antioxidant enzyme gene expression in healthy nonsmoking women, after acute or prolonged ingestion. We evaluated plasma total antioxidant status (TAS), the kinetics of diene conjugate generation, and thiobarbituric acid reactive substance (TBARS) contents in plasma, as well as mRNA levels of antioxidant gluthatione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). After the supplementation period with mate tea, lipid peroxidation was acutely lowered, an effect that was maintained after prolonged administration. Total antioxidant status and the level of antioxidant enzyme gene expression were also demonstrated after prolonged consumption. These results suggest that regular consumption of mate tea may increase antioxidant defense of the body by multiple mechanisms.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
The processing of fish roe leads to changes in its chemical composition, the extent of which depends on the techniques and additives employed. This study aimed to investigate the effects of ripening temperature and the use of sodium benzoate and citric acid on the quality of ripened cod roe, with respect to the contents of volatile base nitrogen (VBN), trimethylamine (TMA), biogenic amines (BA) and on the lipid composition. In comparison with fresh roes, ripened roes presented higher contents of VBN, TMA, BA and the proportion of free fatty acids regardless of the temperature and additives used during the ripening process. The greatest increases were observed in the samples ripened at 17 degrees C without additives, in which histamine was detected at 8.8 mg/100 g. A low ripening temperature was the main factor responsible for minimising changes in the cod roe composition. The addition of sodium benzoate as a preservative or citric acid to decrease the pH value had a significant effect in maintaining the quality of the cod roes, mainly at high ripening temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The cytochrome P450 isoenzyme 3A5 (CYP3A5) has an important role on biotransformation of xenobiotics. CYP3A5 SNPs have been associated with variations on enzyme activity that can modify the metabolism of several drugs. Methods: In order to evaluate the influence of CYP3A5 variants on response to lowering-cholesterol drugs, 139 individuals with hypercholesterolemia were selected. After a wash-out period of 4 weeks, individuals were treated with atorvastatin (10 mg/day/4 weeks). Genomic DNA was extracted by a salting-out procedure. CYP3A5*3C, CYP3A5*6 and CYP3A5*1D were analyzed by PCR-RFLP and DNA sequencing. Results: >Frequencies of the CYP3A5*3C and CYP3A5*1D alleles were lower in individuals of African descent (*3C: 47.8% and *1D: 55.2%) than in non-Africans (*3C: 84.9% and *1D 84.8%, p<0.01). Non-Africans carrying *3A allele (*3C and *1D combined alleles) had lower total and LDL-cholesterol response to atorvastatin than non-*3A allele carriers (p<0.05). Conclusion: CYP3A5*3A allele is associated with reduced cholesterol-lowering response to atorvastatin in non-African individuals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate endothelial venous function, mflammatory markers, and systemic oxidative stress after an oral lipid overload (OLO). We studied 18 healthy adults (9 men; age, 29.2 +/- 0.9 years; body mass index, 22.3 +/- 0.4 kg/m(2)). Blood samples were collected in the fasting state and 3, 4, and 5 hour after the OLO (1000 kcal, 58% fat) for metabolic variables, oxidative stress, inflammatory markers, adiponectin, and resistin. Changes in vein diameter to phenylephrine, acetylcholine, and sodium nitroprusside (dorsal hand vein technique) were measured before and after the OLO. Oral lipid overload increased triglycerides (61 +/- 6 vs 134 +/- 17 mg/dL, P <.001), insulin (7.2 +/- 0.8 vs 10.7 +/- 1.3 mu U/mL, P <.05), and resistin (5.38 +/- 0.5 vs 6.81 +/- 0.7 ng/mL, P <.05) and reduced antioxidant capacity (plasma total antioxidant capacity: 186.7 +/- 56 vs 161.8 +/- 50 U Trolox per microliter plasma, P <.01), vascular reactivity (171.3 +/- 85 vs 894.4 +/- 301 ng/mL, P <.001), and maximum acetylcholine venodilation (105.9% +/- 9% vs 61.0% +/- 7%, P <.05). No changes were observed for sodium nitroprusside. Post-OLO triglycerides were positively correlated with phenylephrine dose (rho = 0.38, P <.05) and resistin (rho = 0.43, P <.01) and negatively correlated with the maximum acetylcholine venodilation (rho = -0.36, P <.05). In conclusion, an OLO impaired venoconstriction responsiveness in healthy subjects, probably because of a reduction in the antioxidant capacity. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.