26 resultados para P. vivax variants
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The circumsporozoite protein (CSP) of Plasmodium vivax, a major target for malaria vaccine development, has immunodominant B-cell epitopes mapped to central nonapeptide repeat arrays. To determine whether rearrangements of repeat motifs during mitotic DNA replication of parasites create significant CSP diversity under conditions of low effective meiotic recombination rates, we examined csp alleles from sympatric P. vivax isolates systematically sampled from an area of low malaria endemicity in Brazil over a period of 14 months. Nine unique csp types, comprising six different nona peptide repeats, were observed in 45 isolates analyzed. Identical or nearly identical repeats predominated in most arrays, consistent with their recent expansion. We found strong linkage disequilibrium at sites across the chromosome 8 segment flanking the csp locus, consistent with rare meiotic recombination in this region. We conclude that CSP repeat diversity may not be severely constrained by rare meiotic recombination in areas of low malaria endemicity. New repeat variants may be readily created by nonhomologous recombination even when meiotic recombination is rare, with potential implications for CSP-based vaccine development. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role ill Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey ill the Brazilian Amazon Basin. Despite Continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the Population was reexamined 12 months later. Antibodies from 16 of 50 (360%) Subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by Multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies.
Resumo:
Genetic diversity and population structure of Plasmodium viva-V parasites call predict the origin and Spread of novel Variants Within a population enabling Population specific malaria control measures. We analyzed the genetic diversity and population Structure of 425 P. vivax isolates from Sri Lanka, Myanmar, and Ethiopia using 12 trinucleotide and tetranucleotide microsatellite markers. All three parasite populations were highly polymorphic with 3-44 alleles per locus. Approximately 65% were multiple-clone infections. Mean genetic diversity (H(E)) was 0.7517 in Ethiopia, 0.8450 in Myanmar, and 0.8610 in Sri Lanka. Significant linkage disequilibrium Was maintained. Population structure showed two clusters (Asian and African) according to geography and ancestry Strong clustering of outbreak isolates from Sri Lanka and Ethiopia was observed. Predictive power of ancestry using two-thirds of the isolates as a model identified 78.2% of isolates accurately as being African or Asian. Microsatellite analysis is a useful tool for mapping short-term outbreaks of malaria and for predicting ancestry.
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Clinical trials documented alarming post-treatment Plasmodium vivax recurrence rates caused by recrudescence of surviving asexual blood stages, relapse from hypnozoites, or new infections. Here we describe high rates of P vivax recurrence (26-40% 180 days after treatment) in two cohorts of rural Amazonians exposed to low levels of malaria transmission after a vivax malaria episode treated with chloroquine-primaquine. Microsatellite analysis of 28 paired acute infection and recurrence parasites showed only two pairs of identical haplotypes (consistent with recrudescences or reactivation of homologous hypnozoites) and four pairs of related haplotypes (sharing alleles at 11-13 of 14 microsatellites analyzed). Local isolates of P vivax were extraordinarily diverse and rarely shared the same haplotype, indicating that frequent recurrences did not favor the persistence or reappearance of clonal lineages of parasites in the Population. This fast haplotype replacement rate may represent the typical population dynamics Of neutral polymorphisms in parasites from low-endemicity areas.
Resumo:
Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum Populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower Virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the Study period. We Suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.
Resumo:
We used mixtures of genomic DNA from two genetically distinct isolates from Brazil, 42M and 312M, to investigate how accurately 12-locus microsatellite typing describes the overall genetic diversity and characterizes multilocus haplotypes in multiple-clone Plasmodium vivax infections. We found varying PCR amplification efficiencies of microsatellite alleles; for example, from the same 1:1 mixture of 42M and 312M DNA we amplified predominantly 312M-type alleles at 10 loci and 42M-type alleles at 2 loci. All microsatellite alleles were accurately scored in 1:0.5 and 1:0.25 312M:42M DNA mixtures, even when minor peak heights did not meet previously suggested criteria for minor allele detection in multiple-clone infections. Relative proportions of major and minor alleles were unaffected by multiple displacement amplification of template DNA prior to PCR-based microsatellite typing. Although microsatellite typing may detect minor alleles in clone mixtures, amplification biases may lead to inaccurate assignment of predominant haplotypes in multiple-clone P. vivax infections. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The human malaria parasite Plasmodium vivax is responsible for 25 - 40% of the similar to 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non- human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
Resumo:
The population structure of Plasmodium vivax remains elusive. The markers of choice for large-scale population genetic studies of eukaryotes, short tandem repeats known as microsatellites, have been recently reported to be less polymorphic in R vivax. Here we investigate the microsatellite diversity and geographic structure in P vivax, at both local and global levels, using 14 new markers consisting of tri- or tetranucleotide repeats. The local-level analysis, which involved 50 field isolates from Sri Lanka, revealed unexpectedly high diversity (average virtual heterozygosity [H-E], 0.807) and significant multilocus linkage disequilibrium in this region of low malaria endemicity. Multiple-clone infections occurred in 60% of isolates sampled in 2005. The global-level analysis of field isolates or monkey-adapted strains identified 150 unique haplotypes among 164 parasites from four continents. Individual P. vivax isolates could not be unambiguously assigned to geographic populations. For example, we found relatively low divergence among parasites from Central America, Africa, Southeast Asia and Oceania, but substantial differentiation between parasites from the same continent (South Asia and Southeast Asia) or even from the same country (Brazil). Parasite relapses, which may extend the duration of P. vivax carriage in humans, are suggested to facilitate the spread of strains across continents, breaking down any pre-existing geographic structure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.
Resumo:
Four hundred and forty-eight samples of total blood from wild monkeys living in areas where human autochthonous malaria cases have been reported were screened for the presence of Plasmodium using microscopy and PCR analysis. Samples came from the following distinct ecological areas of Brazil: Atlantic forest (N = 140), semideciduous Atlantic forest (N = 257) and Cerrado (a savannah-like habitat) (N = 51). Thick and thin blood smears of each specimen were examined and Plasmodium infection was screened by multiplex polymerase chain reaction (multiplex PCR). The frequency of Plasmodium infections detected by PCR in Alouatta guariba clamitans in the Sao Paulo Atlantic forest was 11.3% or 8/71 (5.6% for Plasmodium malariae and 5.6% for Plasmodium vivax) and one specimen was positive for Plasmodium falciparum (1.4%); Callithrix sp. (N = 30) and Cebus apella (N = 39) specimens were negative by PCR tests. Microscopy analysis was negative for all specimens from the Atlantic forest. The positivity rate for Alouatta caraya from semideciduous Atlantic forest was 6.8% (16/235) in the PCR tests (5.5, 0.8 and 0.4% for P. malariae, P. falciparum and P. vivax, respectively), while C apella specimens were negative. Parasitological examination of I he samples using thick smears revealed Plasmodium sp. infections in only seven specimens, which had few parasites (3.0%). Monkeys from the Cerrado (a savannah-like habitat) (42 specimens of A. caraya, 5 of Callithrix jacchus and 4 of C. apella) were negative in both tests. The parasitological prevalence of P. vivax and P. malariae in wild monkeys from Atlantic forest and semideciduous Atlantic forest and the finding of a positive result for P.falciparum in Alouatta from both types of forest support the hypothesis that monkeys belonging to this genus could be a potential reservoir. Furthermore, these findings raise the question of the relationship between simian and autochthonous human malaria in extra-Amazonian regions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.
Resumo:
Background. Malaria is one of the most significant infectious diseases in the world and is responsible for a large proportion of infant deaths. Toll-like receptors (TLRs), key components of innate immunity, are central to countering infection. Variants in the TLR-signaling pathway are associated with susceptibility to infectious diseases. Methods. We genotyped single nucleotide polymorphisms ( SNPs) of the genes associated with the TLR-signaling pathway in patients with mild malaria and individuals with asymptomatic Plasmodium infections by means of polymerase chain reaction. Results. Genotype distributions for the TLR-1 I602S differed significantly between patients with mild malaria and persons with asymptomatic infection. The TLR-1 602S allele was associated with an odds ratio ( OR) of 2.2 ( P = .003; P(corrected) = .015) for malaria among patients with mild malaria due to any Plasmodium species and 2.1 ( P = .015; P(corrected) = .75) among patients with mild malaria due to Plasmodium falciparum only. The TLR-6 S249P SNP showed an excess of homozygotes for the TLR-6 249P allele in asymptomatic persons, compared with patients with mild malaria due to any Plasmodium species (OR 2.1; 95% confidence interval [CI], 1.1-4.2; P = .01; P(corrected) = .05), suggesting that the TLR-6 249S allele may be a risk factor for malaria ( OR, 2.0; 95% CI, 1.1-3.7; P = 0.01; P(corrected) = .05). The TLR-9-1486C allele showed a strong association with high parasitemia ( P < .001). Conclusions. Our findings indicate that the TLR-1 and TLR- 6 variants are significantly associated with mild malaria, whereas the TLR-9-1486C/T variants are associated with high parasitemia. These discoveries may bring additional understanding to the pathogenesis of malaria.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A clinical Klebsiella pneumoniae isolate carrying the extended-spectrum beta-lactamase gene variants bla(SHV-40), bla(TEM-116) and bla(GES-7) was recovered. Cefoxitin and ceftazidime activity was most affected by the presence of these genes and an additional resistance to trimethoprim-sulphamethoxazole was observed. The bla(GES-7) gene was found to be inserted into a class 1 integron. These results show the emergence of novel bla(TEM) and bla(SHV) genes in Brazil. Moreover, the presence of class 1 integrons suggests a great potential for dissemination of bla(GES) genes into diverse nosocomial pathogens. Indeed, the bla(GES-7) gene was originally discovered in Enterobacter cloacae in Greece and, to our knowledge, has not been reported elsewhere.