70 resultados para Oxidase terminal da plastoquinona
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as `benign cytochrome c oxidase deficiency myopathy` is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T > C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.
Resumo:
An amperometric lactate biosensor with lactate oxidase immobilized into a Prussian Blue (PB) modified electrode was fabricated. The advantage of using cetyltrimethylammonium bromide (CTAB) in the electrodeposition step of PB films onto glassy carbon surfaces was confirmed taking into account both the stability and sensitivity of the measurements. The biosensor was used in the development of a FIA amperometric method for the determination of lactate. Under optimal operating conditions (pH = 6.9, E = -0.1 V), the linear response of the method was extended up to 0.28 µmol L-1 lactate with a limit of detection of 0.84 mmol L-1. The repeatability of the method for injections of a 0.28 mmol L-1 lactate solution was 2.2 % (n = 18). The usefulness of the method was demonstrated by determining lactate in beer samples and the results were in good agreement with those obtained by using a reference spectrophotometric enzyme method.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Background: In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results: The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight) were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e. g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions: Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.
Resumo:
Introduction. We present some protocols aiming at partially characterizing banana fruit quality through measurement of some key biochemical parameters. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the steps necessary for achieving four protocols making it possible to measure sugar, organic acids and free ACC contents, and in vitro ACC oxidase activity. Results. Standard results obtained by using the protocols described are presented in the figures.
Resumo:
In Brazil, human T-lymphotropic virus type 2 (HTLV-2) is endemic in Amerindians and epidemic in intravenous drug users (IDUs). The long terminal repeat (LTR) is the most divergent genomic region of HTLV-2, therefore useful to characterize subtypes. Nucleotide sequence and restriction fragment length polymorphism (RFLP) analysis of LTR genomic segments of fourteen HTLV-2 strains isolated from HIV-infected patients of Londrina, Southern Brazil, were carried out. Molecular analysis disclosed that all HTLV-2 strains belonged to 2a subtype, and RFLP detected the presence of the a4, a5, and a6 subgroups according to Switzer's nomenclature. RFLP correlated with nucleotide sequence, and phylogenetic analysis clustered HTLV-2 sequences of IDUs into subgroups a5 and a6. HTLV-2 sequences from individuals of sexual risk factor clustered into the a4 subgroup. These results extend the knowledge of the genetic diversity of HTLV-2 circulating in Brazil and provide insights into HTLV-2 transmission and virus movement in this geographic area.
Resumo:
Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 A, beta = 96.03 degrees. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V (M) of 2.12 A3 Da-1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.
Resumo:
Angiotensin I-converting enzyme (ACE) is recognized as one of the main effector molecules involved in blood pressure regulation. In the last few years some polymorphisms of ACE such as the insertion/deletion (I/D) polymorphism have been described, but their physiologic relevance is poorly understood. In addition, few studies investigated if the specific activity of ACE domain is related to the I/D polymorphism and if it can affect other systems. The aim of this study was to establish a biochemical and functional characterization of the I/D polymorphism and correlate this with the corresponding ACE activity. For this purpose, 119 male brazilian army recruits were genotyped and their ACE plasma activities evaluated from the C- and N-terminal catalytic domains using fluorescence resonance energy transfer (FRET) peptides, specific for the C-domain (Abz-LFK(Dnp)OH), N-domain (Abz-SDK(Dnp)P-OH) and both C- and N-domains (Abz-FRK(Dnp)P-OH). Plasma kallikrein activity was measured using Z-Phe-Arg-AMC as substrate and inhibited by selective plasma kallikrein inhibitor (PKSI). Some physiological parameters previously described related to the I/D polymorphism such as handgrip strength, blood pressure, heart rate and BMI were also evaluated. The genotype distribution was II n = 27, ID n = 64 and DD n = 28. Total plasma ACE activity of both domains in II individuals was significantly lower in comparison to ID and DD. This pattern was also observed for C- and N-domain activities. Difference between ID and DD subjects was observed only with the N-domain specific substrate. Blood pressure, heart rate, handgrip strength and BMI were similar among the genotypes. This polymorphism also affected the plasma kallikrein activity and DD group presents high activity level. Thus, our data demonstrate that the I/D ACE polymorphism affects differently both ACE domains without effects on handgrip strength. Moreover, this polymorphism influences the kallikrein-kinin system of normotensive individuals. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the study and development of a combined fault location scheme for three-terminal transmission lines using wavelet transforms (WTs). The methodology is based on the low- and high-frequency components of the transient signals originated from fault situations registered in the terminals of a system. By processing these signals and using the WT, it is possible to determine the time of travelling waves of voltages and/or currents from the fault point to the terminals, as well as estimate the fundamental frequency components. A new approach presents a reliable and accurate fault location scheme combining some different solutions. The main idea is to have a decision routine in order to select which method should be used in each situation presented to the algorithm. The combined algorithm was tested for different fault conditions by simulations using the ATP (Alternative Transients Program) software. The results obtained are promising and demonstrate a highly satisfactory degree of accuracy and reliability of the proposed method.