31 resultados para Optical fiber sensing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (similar to 90%), however it does present a low specificity (similar to 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf. (C) 2010 Optical Society of America
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
An experimental study of the Polarization Dependent Loss (PDL) is performed in an Optical Recirculating Loop (RCL). The RCL enables to simulate the transmission through various optical links using just one optical fiber spool, one in line amplifier, some optical filters and devices in a low cost manner. The total amount of PDL in a Recirculating loop, due to its statistical nature, is different of the simple sum of each element of the recirculating loop because of the alignment variation of the PDL elements with time, depending on the environmental conditions such as fiber stress and temperature. In this paper theoretical studies are also performed using formalism of Jones and Mueller matrices in order to represent the different optical elements in the recirculating loop. The PDL must be correctly characterized in order to evaluate properly the impact on the performance of next generation DWDM systems. Theoretical and experimental results comparison shows that a depolarization of 7% occurs in the experimental setup, probably by the optical amplifier due to the depolarized nature of the amplified spontaneous emission.
Resumo:
The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization of optical losses as a function of the wavelength are discussed. Sample spectra were measured with a portable spectrometer controlled by an acquisition program developed with the LabVIEW software that allows the data to be collected and analyzed.
Resumo:
The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 mu and producing a train of 840 mu J and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.
Resumo:
The objective is to differentiate noncavitated caries enamel through time-resolved fluorescence and to find excitation and emission parameters that can be applied in future clinical practice for detection of caries lesions that are not clearly visible to the professional. Sixteen human teeth with noncavitiated white-spot caries were selected for this work. Fluorescence intensity decay was measured by using an apparatus based on the time-correlated single-photon counting method. An optical fiber bundle was employed for sample excitation (440 nm), and the fluorescence collected by the same bundle (500 nm) was registered. The average lifetime for sound enamel was 7: 93 +/- 0: 09, 2: 46 +/- 0: 04, and 0: 51 +/- 0: 02 ns, whereas for the carious enamel the lifetimes were 4: 84 +/- 0: 06, 1: 35 +/- 0: 02, and 0: 16 +/- 0: 01 ns. It was concluded that it is possible to differentiate between carious and sound regions by time-resolved fluorescence and that, although the origin of enamel fluorescence is still uncertain, the lifetime values seem to be typical of fluorophores like collagen I. (C) 2010 Optical Society of America
Resumo:
Objectives: The aim of this work was to verify the differentiation between normal and pathological human carotid artery tissues by using fluorescence and reflectance spectroscopy in the 400- to 700-nm range and the spectral characterization by means of principal components analysis. Background Data: Atherosclerosis is the most common and serious pathology of the cardiovascular system. Principal components represent the main spectral characteristics that occur within the spectral data and could be used for tissue classification. Materials and Methods: Sixty postmortem carotid artery fragments (26 non-atherosclerotic and 34 atherosclerotic with non-calcified plaques) were studied. The excitation radiation consisted of a 488-nm argon laser. Two 600-mu m core optical fibers were used, one for excitation and one to collect the fluorescence radiation from the samples. The reflectance system was composed of a halogen lamp coupled to an excitation fiber positioned in one of the ports of an integrating sphere that delivered 5 mW to the sample. The photo-reflectance signal was coupled to a 1/4-m spectrograph via an optical fiber. Euclidean distance was then used to classify each principal component score into one of two classes, normal and atherosclerotic tissue, for both fluorescence and reflectance. Results: The principal components analysis allowed classification of the samples with 81% sensitivity and 88% specificity for fluorescence, and 81% sensitivity and 91% specificity for reflectance. Conclusions: Our results showed that principal components analysis could be applied to differentiate between normal and atherosclerotic tissue with high sensitivity and specificity.
Resumo:
Objective: This article describes two inexpensive photodynamic antimicrobial chemotherapy (PACT) protocols to provide intensive local care on ulcerated feet of diabetic patients with osteomyelitis. Background Data: Patients with this condition generally have poor quality of life. The usual treatment consists of the administration of a cocktail of drugs including anti-inflammatories, promoters of blood circulation, and systemic antibiotics. However, depending on the conditions of the tissues, amputation may be required. Consequently, it is important to develop PACT protocols that can help avoid amputation. Materials and Methods: Two PACT protocols were applied to two diabetic patients with osteomyelitis. These protocols were based on several PACT sessions that consisted of: (1) local injection of mixtures of phenothiazines (2% in water) and Hypericum perforatum extract (10% in propylene glycol), and (2) illumination, lasting 10 min, applied to the lesion's interior and exterior using, respectively, an optical fiber and a non-coherent light source. The frequency of PACT was daily or every other day in the beginning, and weekly after tissue recovery begun. The patients were followed clinically and by radiographic testing. Results: Both PACT protocols helped cure these patients who were about to have amputation of their feet. Radiograms showed that bone had healed and that the bone's texture had improved. Conclusion: Here we have described efficient and affordable PACT protocols to treat osteomyelitis in the feet of diabetic patients. This treatment modality should be considered by vascular surgeons and by orthopedists to treat osteomyelitis that is resistant to conventional treatments.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to demonstrate the feasibility of laser induced breakdown spectrometry (LIBS) for the determination of macro and micronutrients in multielement tablets. The experimental setup was designed by using a laser Q-switch (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collected by lenses into an optical fiber coupled to an echelle spectrometer equipped with a high-resolution intensified charge coupled device (ICCD). Tablets were cryogenically ground and thereafter pelletized before LIBS analysis. Calibration curves were made by employing samples and mixtures of commercial multielement tablets with binders at different ratios. Best results were achieved by using the following experimental conditions: 29 J cm(-2) laser fluence, 165 mm lens to sample distance (f = 200 mm), 2.0 mu s delay time, 5.0 mu s integration time and 5 accumulated laser pulses. In general, the results obtained by the proposed LIBS procedure were in agreement with those obtained by ICP OES from the corresponding acid digests and coefficients variation of LIBS measurements varied from 2 to 16%. The metrological figures of merit indicate that LIBS fits for the intended purposes, and can be recommended for the analysis of multielement tablets and similar matrices aiming the determination of Ca, Cu, Fe, Mg, Mn, P and Zn.
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest plantations, which have recently attracted much attention as a result of their high expansion rate in many tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the age of the stands) estimated from these time series with real values provided by the company showed that the root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability and 87% of stand dominant height variability. Age variables were combined with other variables derived from the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest) regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height, and an accuracy of about 25 m(3)/ha for volume (15% of the volume average value) and about 1.6 m for dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated over the two first years after planting, which are critical for stand establishment. These results open perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation forests. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.
Resumo:
Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.