127 resultados para Oil Chain
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Performance of different immobilized lipases in palm oil biodiesel synthesis. Optimized conditions for palm oil and ethanol enzymatic biodiesel synthesis were determined with different immobilized lipases SiO(2)-PVA-immobilized lipase from Pseudomonas fluorescens and acrylic resin-immobilized lipase, Novozym (R) 435, from Candida antartica, in solvent-free medium. A full factorial design assessed the influence of temperature (42 - 58 degrees C) and ethanol: palm oil (6:1 - 18:1) molar ratio on the transesterification yield. Main effects were adjusted by multiple regression analysis to linear models and the maximum transesterification yield was obtained at 42 degrees C and 18:1 ethanol: palm oil molar ratio. Mathematical models featuring total yield for each immobilized lipase were suitable to describe the experimental results.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 +/- 0.01 mu g/cm(2)/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 mu g/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.
Resumo:
Background & aims: There is scarce information about immune function and parenteral. fish oil (FO). The influence of a new parenteral. lipid emulsion (LE) containing fish oil (SMOF) was experimentally evaluated on neutrophils` chemotaxis and macrophages` phagocytosis. Methods: Adult mate Lewis rats (n = 40) were randomized into five groups; one non-surgical. control and four to receive parenteral LE or saline infusion through jugular vein catheterization: SMOF (mixture of 30% medium-chain triglycerides, 30% soybean, 25% olive and 15% fish oils); MCT/LCT (physical mixture of 50% medium-chain triglycerides and 50% soybean oil); MCT/LCT/FO (80% MCT/LCT supplemented with 20% FO) and SS (saline). In the 5th experimental day and after intravenous colloidal carbon injection, blood and tissue (liver, lung and spleen) samples were collected and immunological analyses were performed. Results: LE didn`t influence neutrophil chemotaxis. SMOF didn`t influence phagocytosis (p > 0.05) while MCT/LCT and MCT/LCT/FO LE increased the number of liver and lung resident macrophages that had engaged in phagocytosis compared with CO-NS and SS (p < 0.05). Only MCT/LCT/FO increased the number of spleen resident macrophages that had engaged in phagocytosis (p < 0.05). Conclusions: LE, independently of composition, had no influence on neutrophils` chemotaxis, but showed different effect on phagocytosis by macrophages. SMOF LE had neutral effect while fish oil LE enriched with MCT/LCT LE increased resident-macrophages` phagocytosis. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in (omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Methods: Twenty volunteers were recruited and blood was. collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). Results: OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. Conclusions: The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.
Resumo:
Lipid emulsion (LE) containing medium/omega-6 long chain triglyceride-based emulsion (MCT/omega-6 LCT LE) has been recommended in the place of omega-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/omega-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/omega-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/omega-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/omega-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription.
Resumo:
Abnormal surface expression of HLA-DR by leukocytes is associated with a poor prognosis in critical care patients. Critical care patients often receive total parenteral nutrition with lipid emulsion (LE). In this study we evaluated the influence of fish oil LE (FO) on human monocyte/macrophage (M phi) expression of surface HLA-DR under distinct activation states. Mononuclear leukocytes from the peripheral blood of healthy volunteers (n = 18) were cultured for 24 hours without LE (control) or with 3 different concentrations (0.1, 0.25, and 0.5%) of the follow LE: a) pure FO b) FO in association (1:1 v/v) with LE composed of 50% medium-chain trygliceride and 50% soybean oil (MCTSO), and c) pure MCTSO. The leukocytes were also submitted to different cell activation states, as determinate by INF-gamma addition time: no INF-gamma addition, 18 hours before, or at the time of LE addition. HLA-DR expression on M phi surface was evaluated by flow cytometry using specific monoclonal antibodies. In relation to controls (for 0.1%, 0.25%, and 0.5%: 100) FO decreased the expression of HLA-DR when added alone [in simultaneously-activated M phi, for 0.1%: 70 (59 +/- 73); for 0.25%: 51 (48 +/- 56); and for 0.5%: 52.5(50 +/- 58)] or in association with MCTSO [in simultaneously-activated M phi, for 0.1%: 50.5 (47 +/- 61); for 25%: 49 (45 +/- 52); and for 05 %: 51 (44 +/- 54) and in previously-activated M phi, for 1.0 % : 63 (44 +/- 88); for 0.25%: 70 (41 +/- 88); and for 0.5%: 59.5 (39 +/- 79)] in culture medium (Friedman p<0.05). In relation to controls (for 0.1%, 0.25%, and 0.5%: 100), FO did not influence the expression of these molecules on non-activated M phi [for 0.1 % : 87.5 (75 +/- 93); for 0.25%: 111 (98 +/- 118); and for 0.5%: 101.5 (84 +/- 113)]. Results show that parenteral FO modulates the expression of HLA-DR on human M phi surface accordingly to leukocyte activation state. Further clinical studies evaluating the ideal moment of fish oil LE infusion to modulate leukocyte functions may contribute to a better understanding of its immune modulatory properties.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
The oil obtained from Brazilian roasted coffee by supercritical CO2 extraction shows considerable aromatic properties, mainly composed by five aromatic compounds, 2-methylpyrazine; 2-furfurylalcohol, 2,5-dimethylpyrazine; γ-butyrolactone and 2-furfurylacetate. Sensory analyses were used to verify the influence of a mixture of these important classes of aromatic coffee compounds (pyrazines, furans and lactones) and of the roasted coffee aromatic oil on the coffee aroma and flavour of black instant freeze and spray-dried coffee beverages. In the acceptance evaluation of the aroma, the samples prepared with freeze-dried instant coffee without the mixture of volatile compounds (sample 4) were not significantly different from the freeze-dried instant coffee in which the aromatic coffee oil was added (sample 5) and from the sample prepared with freeze-dried coffee in which the mixture of the five volatile was added (sample 3), coincidentally from the same drying process. Therefore, sample (3) did not differ from samples prepared with spray dried instant coffee without (sample 1) and to which (sample 2) the mixture of volatile was added. Therefore, with respect to this attribute, the addition of this mixture did not interfere in this drink acceptance. Taking into consideration the flavor, samples prepared with freeze-dried instant coffee in which the aromatic coffee oil was added (5) and the samples with (3) and without (4) the mixture of the five volatile was added did not differ significantly, however sample (4) did not differ from samples (1) and (2). Regarding this attribute, the addition of the aromatic oil of roasted coffee or a mixture of volatile in samples of freeze-dried instant coffee had a better acceptance than those dried by spray dryer (1) and (2). Thus, the enrichment of drinks with the aromatic oil of roasted coffee, or even with the mixture of the five components did not influence the consumer acceptance with respect to the aroma, but exerts influence with respect to flavour.
Resumo:
It is reported for the first time oil collecting by bees of the genus Caenonomada on flowers of Plantaginaceae. Females of Caenonomada unicalcarata were observed collecting oil on flowers of Angelonia cornigera, and males and females of Caenonomada bruneri and C. aff. unicalcarata were observed on flowers of Angelonia and Monopera (Plantaginaceae). The record of Caenonomada on Plantaginaceae suggests the use of trichomatic oil glands as a primitive condition in the tribe Tapinotaspidini.
Resumo:
In this study, sedimentary organic matter of oil shale rejects, calschist, shale fine and the so called retorted shale from Irati formation was characterized. EPR was used to analyse the samples regarding loss of signal in g = 2.003 associated to the organic free radical with the calcined samples and washing with hydrogen peroxide. The radical signal was detected in all samples, however, for the calschist and shale fine samples another signal was identified at g = 2.000 which disappeared when the sample was heated at 400 ºC. Hydrogen peroxide washing was also performed and it was noted that after washing the signal appeared around g = 2.000 for all samples, including retorted shale, which might be due to the quartz E1 defect.
Resumo:
The aim of this research was to study the biodegradation of a polymer derived from castor oil, which is a renewable, natural material that is a practical alternative for the replacement of traditional polyurethane foams. Due to its molecular structure, which contains polyester segments derived from vegetable oil, the polymeric surface is susceptible to microorganism attack. This study tested the biological degrading agent that was in contact with the microorganisms resulting from microbiological grease degrading agents, when foam was inoculated. Solid-media agar-plate tests were conducted for their potential to evaluate the biodegradation of polymeric particles by specific strains of microorganisms during 216 hours. The growth rate was defined. This technique provides a way of distinguishing the degradation abilities of microorganisms from the degradability of materials.
Resumo:
Two known sesquiterpenes (1R*,2S*,3R*,5S*,8S*,9R*)-2,3,5,9-tetramethyltricyclo[6.3.0.0(1,5)]undecan-2-ol and (1S*,2S*,3S*,5S*,8S*,9S*)-2,3,5,9-tetramethyltricyclo-[6.3.0.0(1,5)]undecan-2-ol were isolated for the first time from the essential oil of the red seaweed Laurencia dendroidea collected in the Brazilian coast. These compounds were not active against eight bacteria strains and the yeast Candida albicans, but showed some antioxidant activity. Both compounds were also found in other seaweed species showing that they are not exclusive taxonomic markers to the genus Laurencia.
Resumo:
The essential oil of the leaves from Annona coriacea Mart., Annonaceae, was extracted by hydrodistillation in a Clevenger apparatus and analyzed by GC/MS and GC/FID. The oil yield was 0.05% m/m. Sixty compounds were identified, in a complex mixture of sesquiterpenes (76.7%), monoterpenes (20.0%) and other constituents (3.3%). Bicyclogermacrene was its major compound (39.8%) followed by other sesquiterpenes. Most of the monoterpenes were in low concentration (<1%). Only β-pinene and pseudolimonene presented the highest level of 1.6%. The volatile oil presented anti-leishmanial and trypanocidal activity against promastigotes of four species of Leishmania and trypomastigotes of Trypanosoma cruzi, showing to be more active against Leishmania (L.) chagasi (IC50 39.93 µ g/mL) (95% CI 28.00-56.95 µ g/mL).