8 resultados para Occupational driving
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Alfven waves have been invoked as an important mechanism of particle acceleration in stellar winds of cool stars. After their identification in the solar wind they started to be studied in winds of stars located in different regions of the FIR diagram. We discuss here some characteristics of these waves and we present a direct application in the acceleration of late-type stellar winds. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work the interaction of cyclopentene with a set of InP(001) surfaces is investigated by means of the density functional theory. We propose a simple approach for evaluating the surface strain and based on it we have found a linear relation between bond and strain energies and the adsorption energy. Our results also indicate that the higher the bond energy, the more disperse the charge distribution is around the adsorption site associated to the high occupied state, a key feature that characterizes the adsorption process. Different adsorption coverages are used to evaluate the proposed equation. Our results suggest that the proposed approach might be extended to other systems where the interaction of the semiconductor surface and the molecule is restricted to first neighbor sites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Radon and gamma radiation level measurements were carried out inside the La Carolina mine, one of the oldest gold mining camps of southern South America, which is open for touristic visits nowadays. CR-39 track-etch detectors and thermoluminescent dosimeters of natural CaF(2) and LiF TLD-100 were exposed at 14 points along the mine tunnels in order to estimate the mean (222)Rn concentration and the ambient dose equivalent during the summer season (November 2008 to February 2009). The values for the (222)Rn concentration at each monitoring site ranged from 1.8 +/- 0.1 kBq m(-3) to 6.0 +/- 0.5 kBq m(-3), with a mean value of 4.8 kBq m(-3), indicating that these measurements exceed in about three times the upper action level recommended by ICRP for workplaces. The correlations between radon and gamma radiation levels inside the mine were also investigated. Effective doses due to (222)Rn and gamma rays inside the mine were determined, resulting in negligible values to tourists. Considering the effective dose to the mine tourist guides, values exceeding 20 mSv of internal contribution to the effective doses can be reached, depending on the number of working hours inside the mine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of cis-[RuCl(2)(P-P)(N-N)] type complexes (P-P = 1,4-bis(diphenylphosphino)butane or (1,1`-diphenylphosphino)ferrocene; N-N = 2,2`-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P-P)(N-N)](+) species Upon characterization of the isolated compounds by elemental analysis, (31)P{(1)H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good pi acceptor, coordinates trans to the nitrogen atom. A (31)P{(1)H} NMR experiment following the reaction of the precursor cis-[RuCl(2)(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N-N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF(6) species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.
Resumo:
Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, alpha-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Avila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.
Resumo:
Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.
Resumo:
Lithium and magnesium organotellurolates were reacted with lactones producing the corresponding tellurocarboxylic acids. Treatment of the reaction mixture with lithium aluminum hydride allowed the isolation of the corresponding hydroxytellurides in a one-pot operation. (C) 2009 Published by Elsevier Ltd