13 resultados para Nonlinear portal frame dynamics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Resumo:
This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Little follow-up data on malaria transmission in communities originating from frontier settlements in Amazonia are available. Here we describe a cohort study in a frontier settlement in Acre, Brazil, where 509 subjects contributed 489.7 person-years of follow-up. The association between malaria morbidity during the follow-up and individual, household, and spatial covariates was explored with mixed-effects logistic regression models and spatial analysis. Incidence rates for Plasmodium vivax and Plasmodium falciparum malaria were 30.0/100 and 16.3/100 person-years at risk, respectively. Malaria morbidity was strongly associated with land clearing and farming, and decreased after five years of residence in the area, suggesting that clinical immunity develops among subjects exposed to low malaria endemicity. Significant spatial clustering of malaria was observed in the areas of most recent occupation, indicating that the continuous influx of nonimmune settlers to forest-fringe areas perpetuates the cycle of environmental change and colonization that favors malaria transmission in rural Amazonia.
Resumo:
In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an experimental characterization of the behavior of an analogous version of the Chua`s circuit. The electronic circuit signals are captured using a data acquisition board (DAQ) and processed using LabVIEW environment. The following aspects of the time series analysis are analyzed: time waveforms, phase portraits, frequency spectra, Poincar, sections, and bifurcation diagram. The circuit behavior is experimentally mapped with the parameter variations, where are identified equilibrium points, periodic and chaotic attractors, and bifurcations. These analysis techniques are performed in real-time and can be applied to characterize, with precision, several nonlinear systems.
Resumo:
In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal ill ethanol employing the Z-scan technique with femtosecond pulses, The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and it peak at 790 nm. We attribute the 2PA hand to the mixing of states (1)B(u)+-like and vertical bar S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to vertical bar S >, vertical bar S(2)> (""(1)Bu(+)""), vertical bar S(3)>, and vertical bar S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response Functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.
Resumo:
Tourism destination networks are amongst the most complex dynamical systems, involving a myriad of human-made and natural resources. In this work we report a complex network-based systematic analysis of the Elba (Italy) tourism destination network, including the characterization of its structure in terms of several traditional measurements, the investigation of its modularity, as well as its comprehensive study in terms of the recently reported superedges approach. In particular, structural (the number of paths of distinct lengths between pairs of nodes, as well as the number of reachable companies) and dynamical features (transition probabilities and the inward/outward activations and accessibilities) are measured and analyzed, leading to a series of important findings related to the interactions between tourism companies. Among the several reported results, it is shown that the type and size of the Companies influence strongly their respective activations and accessibilities, while their geographical position does not seem to matter. It is also shown that the Elba tourism network is largely fragmented and heterogeneous, so that it could benefit from increased integration. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor`s biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXR alpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.
Resumo:
Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with the existence and nonlinear stability of periodic travelling-wave solutions for a nonlinear Schrodinger-type system arising in nonlinear optics. We show the existence of smooth curves of periodic solutions depending on the dnoidal-type functions. We prove stability results by perturbations having the same minimal wavelength, and instability behaviour by perturbations of two or more times the minima period. We also establish global well posedness for our system by using Bourgain`s approach.