386 resultados para Nonlinear analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper deals with the application of the lumped dissipation model in the analysis of reinforced concrete structures, emphasizing the nonlinear behaviour of the materials The presented model is based on the original models developed by Cipollina and Florez-Lopez (1995) [12]. Florez-Lopez (1995) [13] and Picon and Florez-Lopez (2000) [14] However, some modifications were introduced in the functions that control the damage evolution in order to improve the results obtained. The efficiency of the new approach is evaluated by means of a comparison with experimental results on reinforced concrete structures such as simply supported beams, plane frames and beam-to-column connections Finally, the adequacy of the numerical model representing the global behaviour of framed structures is investigated and the limits of the analysis are discussed (C) 2009 Elsevier Ltd All rights reserved
Resumo:
The applicability of a meshfree approximation method, namely the EFG method, on fully geometrically exact analysis of plates is investigated. Based on a unified nonlinear theory of plates, which allows for arbitrarily large rotations and displacements, a Galerkin approximation via MLS functions is settled. A hybrid method of analysis is proposed, where the solution is obtained by the independent approximation of the generalized internal displacement fields and the generalized boundary tractions. A consistent linearization procedure is performed, resulting in a semi-definite generalized tangent stiffness matrix which, for hyperelastic materials and conservative loadings, is always symmetric (even for configurations far from the generalized equilibrium trajectory). Besides the total Lagrangian formulation, an updated version is also presented, which enables the treatment of rotations beyond the parameterization limit. An extension of the arc-length method that includes the generalized domain displacement fields, the generalized boundary tractions and the load parameter in the constraint equation of the hyper-ellipsis is proposed to solve the resulting nonlinear problem. Extending the hybrid-displacement formulation, a multi-region decomposition is proposed to handle complex geometries. A criterium for the classification of the equilibrium`s stability, based on the Bordered-Hessian matrix analysis, is suggested. Several numerical examples are presented, illustrating the effectiveness of the method. Differently from the standard finite element methods (FEM), the resulting solutions are (arbitrary) smooth generalized displacement and stress fields. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
This paper presents a, simple two dimensional frame formulation to deal with structures undergoing large motions due to dynamic actions including very thin inflatable structures, balloons. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not. displacements, characterizing the novelty of the proposed technique. A non-dimensional space is created and the deformation function (change of configuration) is written following two independent mappings from which the strain energy function is written. The classical New-mark equations are used to integrate time. Dumping and non-conservative forces are introduced into the mechanical system by a rheonomic energy function. The final formulation has the advantage of being simple and easy to teach, when compared to classical Counterparts. The behavior of a bench-mark problem (spin-up maneuver) is solved to prove the formulation regarding high circumferential speed applications. Other examples are dedicated to inflatable and very thin structures, in order to test the formulation for further analysis of three dimensional balloons.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.
Resumo:
This paper is concerned with the existence of a global attractor for the nonlinear beam equation, with nonlinear damping and source terms, u(tt) + Delta(2)u -M (integral(Omega)vertical bar del u vertical bar(2)dx) Delta u + f(u) + g(u(t)) = h in Omega x R(+), where Omega is a bounded domain of R(N), M is a nonnegative real function and h is an element of L(2)(Omega). The nonlinearities f(u) and g(u(t)) are essentially vertical bar u vertical bar(rho) u - vertical bar u vertical bar(sigma) u and vertical bar u(t)vertical bar(r) u(t) respectively, with rho, sigma, r > 0 and sigma < rho. This kind of problem models vibrations of extensible beams and plates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the generic hyperbolicity of equilibria of a reaction-diffusion system with respect to nonlinear terms in the set of C(2)-functions equipped with the Whitney Topology. To accomplish this, we combine Baire`s Lemma and the usual Transversality Theorem. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper investigates the characteristics of the Power Spectral Density (PSD) of chaotic signals generated by skew tent maps. The influence of the Lyapunov exponent on the autocorrelation sequence and on the PSD is evaluated via computational simulations. We conclude that the essential bandwidth of these signals is strongly related to this exponent and they can be low-pass or high-pass depending on the family`s parameter. This way, the PSD of a chaotic signal is a function of the generating map although this is not a one-to-one relationship. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved.
Resumo:
This note is motivated from some recent papers treating the problem of the existence of a solution for abstract differential equations with fractional derivatives. We show that the existence results in [Agarwal et al. (2009) [1], Belmekki and Benchohra (2010) [2], Darwish et al. (2009) [3], Hu et al. (2009) [4], Mophou and N`Guerekata (2009) [6,7], Mophou (2010) [8,9], Muslim (2009) [10], Pandey et al. (2009) [11], Rashid and El-Qaderi (2009) [12] and Tai and Wang (2009) [13]] are incorrect since the considered variation of constant formulas is not appropriate. In this note, we also consider a different approach to treat a general class of abstract fractional differential equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study the existence of global solutions for a class of abstract neutral differential equation defined on the whole real axis. Some concrete applications related to ordinary and partial differential equations are considered. (C) 2009 Elsevier Ltd. All rights reserved.