186 resultados para Non-autonomous equation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we consider the strongly damped wave equation with time-dependent terms u(tt) - Delta u - gamma(t)Delta u(t) + beta(epsilon)(t)u(t) = f(u), in a bounded domain Omega subset of R(n), under some restrictions on beta(epsilon)(t), gamma(t) and growth restrictions on the nonlinear term f. The function beta(epsilon)(t) depends on a parameter epsilon, beta(epsilon)(t) -> 0. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors {A(epsilon)(t) : t is an element of R}, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at epsilon = 0. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.
Resumo:
This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
Resumo:
Inspired by the theory of semigroups of growth a, we construct an evolution process of growth alpha. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that. under natural assumptions. a reasonable concept of solution can be given to Such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Holder continuous functions and to a parabolic problem in a domain Omega subset of R(n) with a one dimensional handle.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
Aims. Given that in most cases just thermal pressure is taken into account in the hydrostatic equilibrium equation to estimate galaxy cluster mass, the main purpose of this paper is to consider the contribution of all three non-thermal components to total mass measurements. The non-thermal pressure is composed by cosmic rays, turbulence and magnetic pressures. Methods. To estimate the thermal pressure we used public XMM-Newton archival data of five Abell clusters to derive temperature and density profiles. To describe the magnetic pressure, we assume a radial distribution for the magnetic field, B(r) proportional to rho(alpha)(g). To seek generality we assume alpha within the range of 0.5 to 0.9, as indicated by observations and numerical simulations. Turbulent motions and bulk velocities add a turbulent pressure, which is considered using an estimate from numerical simulations. For this component, we assume an isotropic pressure, P(turb) = 1/3 rho(g)(sigma(2)(r) + sigma(2)(t)). We also consider the contribution of cosmic ray pressure, P(cr) proportional to r(-0.5). Thus, besides the gas (thermal) pressure, we include these three non-thermal components in the magnetohydrostatic equilibrium equation and compare the total mass estimates with the values obtained without them. Results. A consistent description for the non-thermal component could yield a variation in mass estimates that extends from 10% to similar to 30%. We verified that in the inner parts of cool core clusters the cosmic ray component is comparable to the magnetic pressure, while in non-cool core clusters the cosmic ray component is dominant. For cool core clusters the magnetic pressure is the dominant component, contributing more than 50% of the total mass variation due to non-thermal pressure components. However, for non-cool core clusters, the major influence comes from the cosmic ray pressure that accounts for more than 80% of the total mass variation due to non-thermal pressure effects. For our sample, the maximum influence of the turbulent component to the total mass variation can be almost 20%. Although all of the assumptions agree with previous works, it is important to notice that our results rely on the specific parametrization adopted in this work. We show that this analysis can be regarded as a starting point for a more detailed and refined exploration of the influence of non-thermal pressure in the intra-cluster medium (ICM).
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this study, we investigate the possibility of mode localization occurrence in a non-periodic Pfluger`s column model of a rocket with an intermediate concentrated mass at its middle point. We discuss the effects of varying the intermediate mass magnitude and its position and the resulting energy confinement for two cases. Free vibration analysis and the severity of mode localization are appraised, without decoupling the system, by considering as a solution basis the fundamental free response or dynamical solution. This allows for the reduction of the dimension of the algebraic modal equation that arises from satisfying the boundary and continuity conditions. By using the same methodology, we also consider the case of a cantilevered Pluger`s column with rotational stiffness at the middle support instead of an intermediate concentrated mass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.
Resumo:
In this Letter, we determine the kappa-distribution function for a gas in the presence of an external field of force described by a potential U(r). In the case of a dilute gas, we show that the kappa-power law distribution including the potential energy factor term can rigorously be deduced in the framework of kinetic theory with basis on the Vlasov equation. Such a result is significant as a preliminary to the discussion on the role of long range interactions in the Kaniadakis thermostatistics and the underlying kinetic theory. (C) 2008 Elsevier B.V. All rights reserved.