8 resultados para Niobium pentoxide
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A systematic study was made of the synthesis of V(2)O(5)center dot nH(2)O nanostructures, whose morphologies, crystal structure, and amount of water molecules between the layered structures were regulated by strictly controlling the hydrothermal treatment variables. The synthesis involved a direct hydrothermal reaction between V(2)O(5) and H(2)O(2), without the addition of organic surfactant or inorganic ions. The experimental results indicate that high purity nanostructures can be obtained using this simple and clean synthetic route. Oil the basis of a study of hydrothermal treatment variables such as reaction temperature and time, X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) revealed that it was possible to obtain nanoribbons of the V(2)O(5)center dot nH(2)O monoclinic phase and nanowires or nanorods of the V(2)O(5)center dot nH(2)O orthorhombic phase. Thermal gravimetric analysis (TGA) shows also that the water content in the Structure call be controlled at appropriate hydrothermal conditions. Concerning the oxidation state of the vanadium atoms of as-obtained samples, a mixed-valence state composed of V(4+) and V(5+) was observed ill the V(2)O(5)center dot nH(2)O monoclinic phase, while the valence of the vanadium atoms was preferentially 5+ in the V(2)O(5)center dot nH(2)O orthorhombic phase. The X-ray absorption near-edge structure (XANES) results also indicated that the local structure of vanadium possessed a higher degree of symmetry in the V(2)O(5)center dot nH(2)O monoclinic phase.
Resumo:
In this work we report results from continuous-wave (CW) and pulsed electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance (NMR) studies of the vanadium pentoxide xerogel V2O5:nH(2)O (n approximate to 1.6). The low temperature CW-EPR spectrum shows hyperfine structure due to coupling of unpaired V4+ electron with the vanadium nucleus. The analysis of the spin Hamiltonian parameters suggests that the V4+ ions are located in tetragonally distorted octahedral sites. The transition temperature from the rigid-lattice low-temperature regime to the high temperature liquid-like regime was determined from the analysis of the temperature dependence of the hyperfine splitting and the V4+ motional correlation time. The Electron Spin Echo Envelope Modulation (ESEEM) data shows the signals resulting from the interaction of H-1 nuclei with V4+ ions. The modulation effect was observed only for field values in the center of the EPR absorption spectrum corresponding to the single crystals orientated perpendicular to the magnetic field direction. At least three protons are identified in the xerogel by our magnetic resonance experiments: (I) the OH groups in the equatorial plane, (ii) the bound water molecules in the axial V=O bond and (iii) the free mobile water molecules between the oxide layers. Proton NMR lineshapes and spin-lattice relaxation times were measured in the temperature range between 150 K and 323 K. Our analysis indicates that only a fraction of the xerogel protons contribute to the measured conductivity.
Resumo:
A new occurrence of rankamaite is here described at the Urubu pegmatite, Itinga municipality, Minas Gerais, Brazil. The mineral forms cream-white botryoidal aggregates of acicular to fibrous crystals, intimately associated with simpsonite, thoreaulite, cassiterite, quartz, elbaite, albite, and muscovite. The average of six chemical analyses obtained by electron microprobe is (range in parentheses, wt%): Na(2)O 2.08 (1.95-2.13), K(2)O 2.61 (2.52-2.74), Al(2)O(3) 1.96 (1.89-2.00), Fe(2)O(3) 0.01 (0.00-0.03), TiO(2) 0.02 (0.00-0.06), Ta(2)O(5) 81.04 (79.12-85.18), Nb(2)O(5) 9.49 (8.58-9.86), total 97.21 (95.95-101.50). The chemical formula derived from this analysis is (Na(1.55)K(1.28))(Sigma 2.83)(Ta(8.45)Nb(1.64)Al(0.89)Fe(0.01)(3+)Ti(0.01))(Sigma 11.00)[O(25.02)(OH)(5.98)](Sigma 31.00). Rankamaite is an orthorhombic ""tungsten bronze"" (OTB), crystallizing in the space group Cmmm. Its unit-cell parameters refined from X-ray diffraction powder data are: a = 17.224(3), b = 17.687(3), c = 3.9361(7) angstrom, V = 1199.1(3) angstrom(3), Z = 2. Rietveld refinement of the powder data was undertaken using the structure of LaTa(5)O(14) as a starting model for the rankamaite structure. The structural formula obtained with the Rietveld analyses is: (Na(2.21)K(1.26))Sigma(3.37)(Ta(9.12)NB(1.30) Al(0.59))(Sigma 11.00)[O(26.29)(OH)(4.71)](Sigma 31.00). The tantalum atoms are coordinated by six and seven oxygen atoms in the form of distorted TaO(6) octahedra and TaO(2) pentagonal bipyramids, respectively. Every pentagonal bipyramid shares edges with four octahedra, thus forming Ta(5)O(14) units. The potassium atom is in an 11-fold coordination, whereas one sodium atom is in a 10-fold and the other is in a 12-fold coordination. Raman and infrared spectroscopy were used to investigate the room-temperature spectra of rankamaite.
Resumo:
Structural, spectroscopic and dielectric properties of thulium-doped laser-heated pedestal Ta(2)O(5) as-grown fibres were studied. Undoped samples grow preferentially with a single crystalline monoclinic structure. The fibre with the lowest thulium content (0.1 at%) also shows predominantly a monoclinic phase and no intra-4f(12) Tm(3+) recombination was observed. For sample with the highest thulium amount (1.0 at%), the appearance of a dominant triclinic phase as well as intraionic optical activation was observed. The dependence of photoluminescence on excitation energy allows identification of different site locations of Tm(3+) ions in the lattice. The absence of recombination between the first and the ground-state multiplets as well as the temperature dependence of the observed transitions was justified by an efficient energy transfer between the Tm(3+) ions. Microwave dielectric properties were investigated using the small perturbation theory. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for thulium-doped Ta(2)O(5) samples it decreases to 18 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Basic structural aspects about the layered hexaniobate of K(4)Nb(6)O(17) composition and its proton-exchanged form were investigated mainly by spectroscopic techniques. Raman spectra of hydrous K(4)Nb(6)O(17) and H(2)K(2)Nb(6)O(17)center dot H(2)O show significant modifications in the 950-800 cm(-1) region (Nb-O stretching mode of highly distorted NbO(6) octahedra). The band at 900 cm(-1) shifts to 940 cm(-1) after the replacement of K(+) ion by proton. Raman spectra of the original materials and the related deuterated samples are similar suggesting that no isotopic effect occurs. Major modifications were observed when H(2)K(2)Nb(6)O(17) was dehydrated: the relative intensity of the band at 940 cm(-1) decreases and new bands seems to be present at about 860-890 cm(-1). The H(+) ions should be shielded by the hydration sphere what preclude the interaction with the layers. Removing the water molecules, H(+) ions can establish a strong interaction with oxygen atoms, decreasing the bond order of Nb-O linkage. X-ray absorption near edge structure studies performed at Nb K-edge indicate that the niobium coordination number and oxidation state remain identical after the replacement of potassium by proton. From the refinement of the fine structure, it appears that the Nb-Nb coordination shell is divided into two main contributions of about 0.33 and 0.39 nm, and interestingly the population, i.e., the number of backscattering atoms is inversed between the two hexaniobate materials. 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.
Resumo:
Highly stable and crystalline V(2)O(5) nanoparticles with an average diameter of 15 nm have been easily prepared by thermal treatment of a bariandite-like vanadium oxide, V(10)O(24)center dot 9H(2)O. Their characterization was carried out by powder X-ray diffractometry (XRD). Fourier transform infrared (FT-IR) and Raman spectroscopies, and transmission electron microscopy (TEM). The fibrous and nanostructured film obtained by electrophoretic deposition of the V(2)O(5) nanoparticles showed good electroactivity when submitted to cyclic voltammetry in an ionic liquid-based electrolyte. The use of this film for the preparation of a nanostructured electrode led to an improvement of about 50% in discharge capacity values when compared with similar electrodes obtained by casting of a V(2)O(5) xerogel. (C) 2009 Elsevier Inc. All rights reserved.