98 resultados para Nerve injury-induced protein (Ninjurin)-1
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present work we investigated the effects of Crotalus durissus terrificus venom (CdtV) on the pulmonary mechanic events [static and dynamic elastance, resistive (Delta P1) and viscoelastic pressures (Delta P2)] and histology after intramuscular injection of saline solution (control) or venom (0.6 mu g/g). The static and dynamic elastance values were increased significantly after 3 It of venom inoculation, but were reduced at control values in the other periods studied. The Delta P1 values that correspond to the resistive properties of lung tissue presented a significant increase after 6 h of CdtV injection, reducing to basal levels 12 h after the venom injection. In Delta P2 analysis, correspondent to viscoelastic components, an increase occurred 12 h after the venom injection, returning to control values at 24 h. CdtV also caused an increase of leukocytes recruitment (3-24 h) to the airways wall as well as to the lung parenchyma. In conclusion, C. durissus terrificus rattlesnake venom leads to lung injury which is reverted, after 24 h of inoculation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Delta 9-THC is a component of Cannabis sativa that increases food intake in animals and humans, an effect prevented by selective CB1 receptor antagonists. Cannabidiol (CBD) is another constituent of this plant that promotes several opposite neuropharmacological effects compared to Delta 9-THC. CBD mechanisms of action are still not clear, but under specific experimental conditions it can antagonize the effects of cannabinoid agonists, block the reuptake of anandamide and act as an agonist of 5-HT1A receptors. Since both the cannabinoid and serotoninergic systems have been implicated in food intake control, the aim of the present work was to investigate the effects caused by CBD on hyperphagia induced by agonists of CB1 or 5-HT1A receptors. Fed or fasted Wistar rats received intraperitoneal (i.p.) injections of CBD (1, 10 and 20 mg/kg) and food intake was measured 30 min later for 1 h. Moreover, additional fed or fasted groups received, after pretreatment with CBD (20 mg/kg) or vehicle, i.p. administration of vehicle, a CBI receptor agonist WIN55,212-2 (2 mg/kg) or a 5-HT1A receptor agonist 8-OH-DPAT (1 mg/kg) and were submitted to the food intake test for 1 h. CBD by itself did not change food intake in fed or fasted rats. However, it prevented the hyperphagic effects induced by WIN55,212-2 or 8-OH-DPAT. These results show that CBD can interfere with food intake changes induced by a CB1 or 5-HT1A receptor agonist, suggesting that its role as a possible food intake regulator should be further investigate. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1 beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1 beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1 beta-induced neutrophil migration. The neutrophil migration induced by IL-1 beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1 beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1 beta. The chemotactic activity of the supernatant of IL-1 beta-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1 beta-stimulated mast cells supernatant is due to the presence of IL-1 beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1 beta depends upon LTB4 released by macrophages and upon IL-1 beta and TNF alpha released by mast cells.
Resumo:
O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)
Resumo:
The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.
Resumo:
Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.
Resumo:
The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.
Resumo:
We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Primary sensory afferent neurons modulate the hyperdynamic circulation in Cirrhotic rats with portal hypertension.The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa, to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.
Resumo:
RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
The purpose of this study was to determine whether myofibroblasts or other cells in the stroma in the cornea produce interleukin (IL)-1 alpha or IL-1 beta that could modulate myofibroblast viability in corneas with haze after photorefractive keratectomy (PRK). Twenty-four female rabbits had haze-generating PRK for 9 diopters of myopia and were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were removed, frozen in OCT at -80 degrees C, and analyzed by immunocytochemistry using primary antibodies to IL-1 alpha, IL-1 beta and alpha smooth muscle actin (SMA). Double immunostaining was performed for the co-localization of SMA with IL-1 alpha or IL-1 beta. Central dense haze and peripheral slight haze regions of each cornea were analyzed. SMA+ cells that expressed IL-1 alpha protein were detected in both regions of the corneas at most time points following PRK. However, in the haze region at the 1,3 and 4 week time points, significantly more (p < 0.01) SMA cells did not express IL-1 alpha. Also, in the haze region at all three time points, significantly more (p < 0.01) SMA- cells than SMA+ cells expressed interleukin-1 alpha protein. IL-1 beta expression patterns in SMA+ and SMA- stromal cells was similar to that of IL-1 alpha after PRK. Previous studies have demonstrated that IL-1 alpha or IL-1 beta triggers myofibroblast apoptosis in vitro, depending on the available concentration of apoptosis-suppressive TGFO. This study demonstrates that SMA- cells such as corneal fibroblasts, keratocytes, or inflammatory cells may produce IL-1 alpha and/or IL-1 beta that could act in paracrine fashion to regulate myofibroblast apoptosis-especially in the region where there is haze in the cornea after PRK was performed and SMA+ myofibroblasts are present at higher density. However, some SMA+ myofibroblasts themselves produce IL-1 alpha and/or IL-1 beta, suggesting that myofibroblast viability could also be regulated via autocrine mechanisms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.
Resumo:
AIM: To investigate the immunoexpression and diagnostic applicability of human erythrocyte-type glucose transporter protein (GLUT-1) in oral peripheral nerve sheath tumors. MATERIAL AND METHODS: Specimens diagnosed as oral peripheral nerve sheath tumors archived in the Oral Pathology Service of Universidade Federal de Minas Gerais from 1966 to 2006 were evaluated. Thirty-four lesions were included: 15 traumatic neuromas, 11 neurofibromas, four neurilemmomas, and four malignant peripheral nerve sheath tumors (MPNST). One case of neurofibroma was associated with neurofibromatosis type I. Immunohistochemistry for S-100 and GLUT-1 was performed. S-100 was immunopositive in all lesions. RESULTS: Benign lesions were immunopositive for GLUT-1 except in two (18.2%) cases of neurofibromas. In the traumatic neuroma, the perineuriums were immunopositive for GLUT-1. In the neurofibroma, the immunoreactivity was heterogeneous. Immunopositivity was observed at levels of 54.5% in the periphery of the lesion, 9.1% in the center, and 18.2% in both. The neurilemmoma demonstrated immunopositivity in the capsule. One case (25%) of MPNST presented GLUT-1 positive stain in occasional cells distributed homogeneously in all the tumor area. CONCLUSION: GLUT-1 is a useful marker for perineurial cells and should be included in the oral peripheral nerve sheath tumors immunophenotyping thus aiding in the correct diagnosis of these lesions.