3 resultados para Necrotic cell deaths
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurriagomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.
Resumo:
Inflammation is a crucial step for the wound healing process. The effect of linoleic and oleic acids on the inflammatory response of the skin during the healing process and on the release of pro-inflammatory cytokines by rat neutrophils in vitro was investigated. A wound in the dorsal surface of adult rats was performed and fatty acids were then topically administered. Both oleic and linoleic acids increased the wound healing tissue mass. The total protein and DNA contents of the wounds were increased by the treatment with linoleic acid. The treatments with oleic and linoleic acids did not affect vascular permeability. However, the number of neutrophils in the wounded area and air pouches was increased and the thickness of the necrotic cell layer edge around the wound was decreased. A dose-dependent increase in vascular endothelial growth factor-alpha (VEGF-alpha) and interleukin-1 beta (IL-1 beta) by neutrophils incubated in the presence of oleic and linoleic acid was observed. Oleic acid was able to stimulate also the production of cytokine-induced neutrophil chemoattractant in inflammation 2 alphalbeta (CINC-2 alpha/beta). This pro-inflammatory effect of oleic and linoleic acids may speed up the wound healing process. Copyright (c) 2007 John Wiley & Sons, Ltd.