2 resultados para Nanofiber

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal behavior of PANI nanofibers doped with beta-naphthalenesulfonic acid (beta-NSA) was investigated and their morphological and structural changes after heating were monitored by SEM, XRD and Raman techniques, respectively. By using electron-scanning microscopy it is possible to verify that the nanofiber morphology is stable and no polymer degradation is observed in thermogravimetric (TG) data up to 200 degrees C. Nevertheless, the heating promotes the formation of cross-linking structures (phenazine and/or oxazine-like rings), that is clearly demonstrated by the presence of bands at ca. 578, 1398, and 1644 cm(-1) in resonance Raman spectra of heated PANI-NSA samples. The most important consequence of the formation of cross-linking structures in PANI-NSA samples is that these samples retain their nanofiber morphology upon HCl doping in contrast to PANI-NSA nanofibers without heating. (c) 2007 Elsevier Ltd. All rights reserved.