85 resultados para NEUTRON-CAPTURE ELEMENTS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Barium stars are optimal sites for studying the correlations between the neutron-capture elements and other species that may be depleted or enhanced, because they act as neutron seeds or poisons during the operation of the s-process. These data are necessary to help constrain the modeling of the neutron-capture paths and explain the s-process abundance curve of the solar system. Chemical abundances for a large number of barium stars with different degrees of s-process excesses, masses, metallicities, and evolutionary states are a crucial step towards this goal. We present abundances of Mn, Cu, Zn, and various light and heavy elements for a sample of barium and normal giant stars, and present correlations between abundances contributed to different degrees by the weak-s, mains, and r-processes of neutron capture, between Fe-peak elements and heavy elements. Data from the literature are also considered in order to better study the abundance pattern of peculiar stars. The stellar spectra were observed with FEROS/ESO. The stellar atmospheric parameters of the eight barium giant stars and six normal giants that we analyzed lie in the range 4300 < T(eff)/K < 5300, -0.7 < [Fe/H] <= 0.12 and 1.5 <= log g < 2.9. Carbon and nitrogen abundances were derived by spectral synthesis of the molecular bands of C(2), CH, and CN. For all other elements we used the atomic lines to perform the spectral synthesis. A very large scatter was found mainly for the Mn abundances when data from the literature were considered. We found that [Zn/Fe] correlates well with the heavy element excesses, its abundance clearly increasing as the heavy element excesses increase, a trend not shown by the [Cu/Fe] and [Mn/Fe] ratios. Also, the ratios involving Mn, Cu, and Zn and heavy elements usually show an increasing trend toward higher metallicities. Our results suggest that a larger fraction of the Zn synthesis than of Cu is owed to massive stars, and that the contribution of the main-s process to the synthesis of both elements is small. We also conclude that Mn is mostly synthesized by SN Ia, and that a non-negligible fraction of the synthesis of Mn, Cu, and Zn is owed to the weak s-process.
Resumo:
We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and approximate to 0.8 '' angular resolution images in the J, H, and K(S)-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 +/- 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser proper motion observations (6-8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc approximate to 1.5 x 10(50) s(-1)) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10(50) s(-1)) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS 2. The K(S)-band images resolve the infrared source IRS 2 indicating that it is a very young compact H II region. Sources IRS 2E was resolved into compact cluster (within 660 AU of projected distance) of three objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of three objects (maybe four in the case of W51d1) each one. Although IRS 2E is the brightest source in the K-band and at 12.6 mu m, it is not clearly associated with a radio continuum source. Our spectrum of IRS 2E shows, similar to previous work, strong emission in Br gamma and He I, as well as three forbidden emission lines of Fe III and emission lines of molecular hydrogen (H(2)) marking it as a massive young stellar object.
Resumo:
Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.
Resumo:
The first stars that formed after the Big Bang were probably massive(1), and they provided the Universe with the first elements heavier than helium (`metals`), which were incorporated into low-mass stars that have survived to the present(2,3). Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars(4) (that is, with higher alpha-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe(4), which usually arises through nucleosynthesis in low-mass stars(5) (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude(6), which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also over-abundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars(7), whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the `first stars`.
Resumo:
Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A < 20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The first application of lipases as catalysts to obtain optically active boron-containing amines and amides is described. We studied several reaction conditions to achieve the kinetic resolution of boron-containing amines via enantioselective acylation mediated by Candida antarctica lipase B (CAL-B). Excellent enantioselectivity (E>200) and high enantiomeric excess (up to >99%) of both the remaining amines and amides were obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.
Resumo:
Neutron activation analysis was applied to assess trace elements concentrations in head hair from healthy elderly people living in the Sao Paulo metropolitan area. Concentrations of As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, La, Mn, Na, Sb, Se and, Zn were determined. Comparisons were made between the results obtained for dyed and non-dyed hair as well as for hair from females and males of two different age groups. The results were also compared with range values established by clinical laboratories and published data.
Resumo:
Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results.
Resumo:
The k(0)-method instrumental neutron activation analysis (k(0)-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, Sao Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k(0)-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mgkg(-1)), Co (max= 0.47 mg kg(-1)), Cr (max =68 mg kg(-1)), Hg (max =2.79 mg kg(-1)), Sb (max= 0.20 mg kg(-1)), Se (max=1.3 mg kg(-1)) and Zn (max =192 mg kg(-1)) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k(0)-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The degree of homogeneity is normally assessed by the variability of the results of independent analyses of several (e.g., 15) normal-scale replicates. Large sample instrumental neutron activation analysis (LS-INAA) with a collimated Ge detector allows inspecting the degree of homogeneity of the initial batch material, using a kilogram-size sample. The test is based on the spatial distributions of induced radioactivity. Such test was applied to samples of Brazilian whole (green) coffee beans (Coffea arabica and Coffea canephora) of approximately I kg in the frame of development of a coffee reference material. Results indicated that the material do not contain significant element composition inhomogeneities between batches of approximately 30-50 g, masses typically forming the starting base of a reference material.
Resumo:
Environmental quality assessment studies have been conducted with tree species largely distributed in the Atlantic Forest. Leaf and soil samples were collected in the conservation unit Parque Estadual da Serra do Mar (PESM) nearby the industrial complex of Cubatao, Sao Paulo State, Brazil, and analyzed for chemical elements by instrumental neutron activation analysis. Results were compared to background values obtained in the Parque Estadual Carlos Botelho (PECB). The higher As, Fe, Hg and Zn mass fractions in the tree leaves of PESM indicated anthropogenic influence on this conservation unit.
Resumo:
Aiming at the determination of toxic and essential elements in Brazilian commercial bovine milk, 25 ultra high temperature (UHT) milk samples were acquired in the local market of Piracicaba, SP. The samples were freeze-dried and analyzed by instrumental neutron activation analysis (INAA) allowing the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn. When the results were expressed as concentration (mg.l(-1)) no significant differences were found. However, considering the dry matter, results showed a clear difference between the mass fractions (mg.kg(-1) d.w.) of skim milk and whole milk for the elements Br, Ca, K, Na, Rb and Zn, indicating that the removal of fat caused a concentration effect in the dry matter of skim milks. Discrepancies were found between the concentrations of Ca and Na measured by INAA and the values informed in the labels. Ca showed variations within 30% for most samples, while concentrations of Na were up to 190% higher than informed values. The sample preparation and the LNAA procedure were appropriate for the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn in milk samples.
Resumo:
In this work total reflection X-ray fluorescence spectrometry has been employed to determine trace element concentrations in different human breast tissues (normal, normal adjacent, benign and malignant). A multivariate discriminant analysis of observed levels was performed in order to build a predictive model and perform tissue-type classifications. A total of 83 breast tissue samples were studied. Results showed the presence of Ca, Ti, Fe, Cu and Zn in all analyzed samples. All trace elements, except Ti, were found in higher concentrations in both malignant and benign tissues, when compared to normal tissues and normal adjacent tissues. In addition, the concentration of Fe was higher in malignant tissues than in benign neoplastic tissues. An opposite behavior was observed for Ca, Cu and Zn. Results have shown that discriminant analysis was able to successfully identify differences between trace element distributions from normal and malignant tissues with an overall accuracy of 80% and 65% for independent and paired breast samples respectively, and of 87% for benign and malignant tissues. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Br (0.0022 +/- A 0.0006 gL(-1)), Ca (0.113 +/- A 0.012 gL(-1)), Cl (3.07 +/- A 0.36 gL(-1)), K (2.63 +/- A 0.14 gL(-1)), Mg (0.045 +/- A 0.002 gL(-1)) and Na (2.09 +/- A 0.10 gL(-1)) concentrations were determined in whole blood of SJL/J mice using the Neutron Activation Analysis (NAA) technique. Eleven whole blood samples were analyzed in the IEA-R1 nuclear reactor at IPEN (So Paulo, Brazil). These data contribute for applications in veterinary medicine related to biochemistry analyses using whole blood. Moreover, the correlation with human blood estimation allows to checking the similarities for studying muscular dystrophy using this model animal.