15 resultados para N-heterocyclic carbenes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The neutral complex [HgPh(dmpymt)] 1 (dmpymtH = 4,6-dimethylpyrimidine-2(1H)-thione) reacts with HBF(4) to give the cationic complex [HgPh(dmpymtH)][BF(4)] 2. The X-ray molecular structure of the later revealed a [2+1] coordination sphere about the mercury(II) atom (C-Hg-S and Hg center dot center dot center dot N). In the dinuclear complex [(HgPh)(2)(mu-dtu)] 3 [dtuH(2) = 2,4(1H,3H)-pyrimidinedithione or dithiouracil] the coordination spheres are also [2+1] although dissimilar regarding the Hg center dot center dot center dot N secondary bonds. NMR spectroscopy ((1)H, (13)C and (199)Hg) studies were undertaken in solution and the results discussed in the light of the X-ray structures. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for die isolated pterin by quantum mechanical second-order Moller-Plesset Perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier, The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pK(a) value of 8.2 +/- 0.6 that is in excellent agreement with the experimental result of 7.9.
Resumo:
Four new ternary complexes of copper(I) with thiosaccharin and phosphanes were prepared. The reaction of [Cu(4)(tsac)(4)(CH(3)CN)(2)] (1) (tsac: thiosaccharinate anion) with PPh(3) in molar ratios Cu(I)/PPh(3) 1:075 and 1:2 gave the complexes [Cu(4)(tsac)(4)(PPh(3))(3)] center dot CH(3)CN (2) and Cu(tsac)(PPh(3))(2) (3), respectively. The reaction of 1 with Ph(2)PCH(2)PPh(2) (dppm) in molar ratios Cu(I)/dppm 2:1 and 1:1 gave the complexes [Cu(4) (tsac)(4)(dppm)(2)] center dot 2CH(2)Cl(2) (4) and [Cu(2)(tsac)(2)(dppm)(2)] center dot CH(2)Cl(2) (5), respectively. All the compounds have been characterized by spectroscopic and X-ray crystallographic methods. Complex 2 presents a tetra-nuclear arrangement with three metal centers in distorted tetrahedral S(2)NP environments, the fourth one with the Cu(I) ion in a distorted trigonal S(2)N coordination sphere, and the tsac anions acting as six electron donor ligands in mu(3)-S(2)N coordination forms. Complex 3 shows mononuclear molecular units with copper(I) in a distorted trigonal planar coordination sphere, built with the exocyclic S atom of a mono-coordinated thiosaccharinate anion and two P-atoms of triphenylphosphane molecules. With dppm as secondary ligand the structures of the complexes depends strongly on the stoicheometry of the preparation reaction. Complex 4 has a centrosymmetric structure. Two triply bridged Cu(2)(tsac)(2)(dppm) units are joined together by the exocyclic S-atoms of two tsac anions acting effectively as bridging tridentate ligands. Complex 5 is conformed by asymmetric dinuclear moieties where the two dppm and one tsac ligands bridge two Cu(I) atoms and the second tsac anion binds one of the metal centers through its exocyclic S-atom. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The synthesis and characterization of ruthenium compounds of the type [RuCl(2)(NO)(dppp)(L)]PF(6) [dppp = 1,3-bis(diphenylphosphino)propane; L = pyridine, 4-methylpyridine, 4-phenylpyridine and dimethyl sulfoxide] are described. The complexes were characterized by elemental analysis, UV/Vis and infrared spectroscopy, cyclic voltammetry, and X-ray crystallography for the complexes with the pyridine and 4-methylpyridine ligands. In vitro evaluation of these nitrosyl complexes revealed cytotoxic activity from 7.1 to 19.0 mu M against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The 1,3-bis(diphenylphosphino)propane and the N-heterocyclic ligands alone failed to show cytotoxic activities at the concentrations tested (maximum concentration utilized = 200 mu M). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Previous analysis of the ECD spectra of two prenylated benzopyrans isolated from Peperomia obtusifolia, by means of the helicity rule for the chromane chromophore, resulted in the incorrect assignment of their absolute configuration, (5) instead of (R) for a deduced P-helicity of the chromane ring for the (+)-enantiomers. This was discovered by the application of DFT calculations and VCD spectroscopy. Experimental and calculated (B3LYP/6-31G(d)) VCD and IR spectra were compared, and a definitive absolute configuration of (+)-1 and (+)-2 is reassigned directly in solution as (R). The assumption of equatorial positioning of bulky groups, shown here to be invalid for the title molecules, is the underlying cause of the previous incorrect assignment of absolute configuration. Moreover, TDDFT (B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d)) calculations of ECD spectra have shown that both P- and M-helicity of the heterocyclic ring, for a given absolute configuration, lead to the same sign for the (1)L(b) ECD band, thus bringing into question the validity of the empirical ECD helicity rule for chromane molecules. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxy-cycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines`. via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells With the IC(50) values of 1.93 and 2.59 mu mol L(-1) for compounds I and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.
Can mass dissociation patterns of transition-metal complexes be predicted from electrochemical data?
Resumo:
The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The impetus for the increasing interest in studying surface active ionic liquids (SAILs; ionic liquids with long-chain ""tails"") is the enormous potential for their applications, e.g., in nanotechnology and biomedicine. The progress in these fields rests on understanding the relationship between surfactant structure and solution properties, hence applications. This need has prompted us to extend our previous study on 1-(1-hexadecyl)-3-methylimidazolium chloride to 1-(1-alkyl)-3-methylimidazolium chlorides, with alkyl chains containing 10, 12, and 14 carbons. In addition to investigating relevant micellar properties, we have compared the solution properties of the imidazolium-based surfactants with: 1-(1-alkyl)pyridinium chlorides, and benzyl (2-acylaminoethyl)dimethylammonium chlorides. The former series carries a heterocyclic ring head-group, but does not possess a hydrogen that is as acidic as H2 of the imidazolium ring. The latter series carries an aromatic ring, a quaternary nitrogen and (a hydrogen-bond forming) amide group. The properties of the imidazolium and pyridinium surfactants were determined in the temperature range from 15 to 75 degrees C. The techniques employed were conductivity, isothermal titration calorimetry, and static light scattering. The results showed the important effects of the interactions in the interfacial region on the micellar properties over the temperature range studied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new route to obtain the polyalkylated indole (+/-)-trans-trikentrin A was developed. The synthesis of this natural alkaloid features a thallium(III)mediated ring contraction reaction to obtain the trans-1,3-disubstituted five-membered ring in a diastereoselective manner. Thallium(III) is chemoselective in this rearrangement, reacting with the olefin without oxidation of the indole moiety. Other key transformations are the Bartoli`s reaction to construct the heterocyclic ring and a Heck coupling to add the carbons atom that will originate the nonaromatic cycle.
Resumo:
The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.