79 resultados para Myocardial perfusion scan
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
OBJECTIVE. Coronary MDCT angiography has been shown to be an accurate noninvasive tool for the diagnosis of obstructive coronary artery disease (CAD). Its sensitivity and negative predictive value for diagnosing percentage of stenosis are unsurpassed compared with those of other noninvasive testing methods. However, in its current form, it provides no information regarding the physiologic impact of CAD and is a poor predictor of myocardial ischemia. CORE320 is a multicenter multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging. CONCLUSION. We aim to describe the CT acquisition, reconstruction, and analysis methods of the CORE320 study.
Resumo:
Recently, stress myocardial computed tomographic perfusion (CTP) was shown to detect myocardial ischemia. Our main objective was to evaluate the feasibility of dipyridamole stress CTP and compare it to single-photon emission computed tomography (SPECT) to detect significant coronary stenosis using invasive conventional coronary angiography (CCA; stenosis >70%) as the reference method. Thirty-six patients (62 +/- 8 years old, 20 men) with previous positive results with SPECT (<2 months) as the primary inclusion criterion and suspected coronary artery disease underwent a customized multidetector-row CT protocol with myocardial perfusion evaluation at rest and during stress and coronary CT angiography (CTA). Multidetector-row computed tomography was performed in a 64-slice scanner with dipyridamole stress perfusion acquisition before a second perfusion/CT angiographic acquisition at rest. Independent blinded observers performed analysis of images from CTP, CTA, and CCA. All 36 patients completed the CT protocol with no adverse events (mean radiation dose 14.7 +/- 3.0 mSv) and with interpretable scans. CTP results were positive in 27 of 36 patients (75%). From the 9 (25%) disagreements, 6 patients had normal coronary arteries and 2 had no significant stenosis (8 false-positive results with SPECT, 22%). The remaining patient had an occluded artery with collateral flow confirmed by conventional coronary angiogram. Good agreement was demonstrated between CTP and SPECT on a per-patient analysis (kappa 0.53). In 26 patients using CCA as reference, sensitivity, specificity, and positive and negative predictive values were 88.0%, 79.3%, 66.7%, and 93.3% for CTP and 68.8, 76.1%, 66.7%, and 77.8%, for SPECT, respectively (p = NS). In conclusion, dipyridamole CT myocardial perfusion at rest and during stress is feasible and results are similar to single-photon emission CT scintigraphy. The anatomical-perfusion information provided by this combined CT protocol may allow identification of false-positive results by SPECT. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;106:310-315)
Resumo:
Incomplete revascularization is associated with worse long-term outcomes. Autologous bone marrow cells (BMC) have recently been tested in patients with severe coronary artery disease. We tested the hypothesis that intramyocardial injection of autologous BMC increases myocardial perfusion in patients undergoing incomplete coronary artery bypass grafting (CABG). Twenty-one patients (19 men), 59 +/- 7 years old, with limiting angina and multivessel coronary artery disease (CAD), not amenable to complete CABG were enrolled. BMC were obtained prior to surgery, and the lymphomonocytic fraction separated by density gradient centrifugation. During surgery, 5 mL containing 2.1 +/- 1.3 x 10(8) BMC (CD34+ = 0.8 +/- 0.3%) were injected in the ischemic non-revascularized myocardium. Myocardial perfusion was assessed by magnetic resonance imaging (MRI) at baseline and 1 month after surgery. The increase in myocardial perfusion was compared between patients with < 50% (group A, n = 11) with that of patients with > 50% (group B, n = 10) of target vessels (stenosis a parts per thousand yenaEuro parts per thousand 70%) successfully bypassed. Injected myocardial segments included the inferior (n = 12), anterior (n = 7), and lateral (n = 2) walls. The number of treated vessels (2.3 +/- 0.8) was significantly smaller than the number of target vessels (4.2 +/- 1.0; P < 0.0001). One month after surgery, cardiac MRI showed a similar reduction (%) in the ischemic score of patients in group A (72.5 +/- 3.2), compared to patients in group B (78.1 +/- 3.2; P = .80). Intramyocardial injection of autologous BMC may help increase myocardial perfusion in patients undergoing incomplete CABG, even in those with fewer target vessels successfully treated. This strategy may be an adjunctive therapy for patients suffering from a more advanced (diffuse) CAD not amenable for complete direct revascularization.
Resumo:
OBJECTIVES We sought to assess the prognostic value and risk classification improvement using contemporary single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) to predict all-cause mortality. BACKGROUND Myocardial perfusion is a strong estimator of prognosis. Evidence published to date has not established the added prognostic value of SPECT-MPI nor defined an approach to detect improve classification of risk in women from a developing nation. METHODS A total of 2,225 women referred for SPECT-MPI were followed by a mean period of 3.7 +/- 1.4 years. SPECT-MPI results were classified as abnormal on the presence of any perfusion defect. Abnormal scans were further classified as with mild/moderate reversible, severe reversible, partial reversible, or fixed perfusion defects. Risk estimates for incident mortality were categorized as <1%/year, 1% to 2%/year, and >2%/year using Cox proportional hazard models. Risk-adjusted models incorporated clinical risk factors, left ventricular ejection fraction (LVEF), and perfusion variables. RESULTS All-cause death occurred in 139 patients. SPECT-MPI significantly risk stratified the population; patients with abnormal scans had significantly higher death rates compared with patients with normal scans, 13.1% versus 4.0%, respectively (p < 0.001). Cox analysis demonstrated that after adjusting for clinical risk factors and LVEF, SPECT-MPI improved the model discrimination (integrated discrimination index = 0.009; p = 0.02), added significant incremental prognostic information (global chi-square increased from 87.7 to 127.1; p < 0.0001), and improved risk prediction (net reclassification improvement = 0.12; p = 0.005). CONCLUSIONS SPECT-MPI added significant incremental prognostic information to clinical and left ventricular functional variables while enhancing the ability to classify this Brazilian female population into low-and high-risk categories of all-cause mortality. (J Am Coll Cardiol Img 2011;4:880-8) (C) 2011 by the American College of Cardiology Foundation
Resumo:
OBJECTIVES This study aimed at analyzing the association between myocardial perfusion changes and the progression of left ventricular systolic dysfunction in patients with chronic Chagas` cardiomyopathy (CCC). BACKGROUND Pathological and experimental studies have suggested that coronary microvascular derangement, and consequent myocardial perfusion disturbance, may cause myocardial damage in CCC. METHODS Patients with CCC (n = 36, ages 57 +/- 10 years, 17 males), previously having undergone myocardial perfusion single-positron emission computed tomography and 2-dimensional echocardiography, prospectively underwent a new evaluation after an interval of 5.6 +/- 1.5 years. Stress and rest myocardial perfusion defects were quantified using polar maps and normal database comparison. RESULTS Between the first and final evaluations, a significant reduction of left ventricular ejection fraction was observed (55 +/- 11% and 50 +/- 13%, respectively; p = 0.0001), as well as an increase in the area of the perfusion defect at rest (18.8 +/- 14.1% and 26.5 +/- 19.1%, respectively; p = 0.0075). The individual increase in the perfusion defect area at rest was significantly correlated with the reduction in left ventricular ejection fraction (R = 0.4211, p = 0.0105). Twenty patients with normal coronary arteries (56%) showed reversible perfusion defects involving 10.2 +/- 9.7% of the left ventricle. A significant topographic correlation was found between reversible defects and the appearance of new rest perfusion defects at the final evaluation. Of the 47 segments presenting reversible perfusion defects in the initial study, 32 (68%) progressed to perfusion defects at rest, and of the 469 segments not showing reversibility in the initial study, only 41 (8.7%) had the same progression (p < 0.0001, Fisher exact test). CONCLUSIONS In CCC patients, the progression of left ventricular systolic dysfunction was associated with both the presence of reversible perfusion defects and the increase in perfusion defects at rest. These results support the notion that myocardial perfusion disturbances participate in the pathogenesis of myocardial injury in CCC. (J Am Coll Cardiol Img 2009;2:164-72) (c) 2009 by the American College of Cardiology Foundation
Resumo:
The objective of this report is to document the effects of an aerobic training program on myocardial perfusion, and endothelial function abnormalities, and on the relief of angina in a patient with microvascular myocardial ischemia. A 53-year-old female patient exhibited precordial pain on effort and angiographically normal coronaries. Her symptoms had been present for 4 yrs despite pharmacologic treatment for the control of risk factors, with myocardial perfusion scintigraphy revealing an extensive reversible perfusion defect. She was submitted to aerobic training for 4 mos, obtaining significant improvement of the anginal symptoms. Additionally, after the aerobic training program, scintigraphy revealed the disappearance of the myocardial perfusion defect, with a marked improvement of endothelium-dependent vasodilatory response and an improved quality-of-life score. These results suggest that aerobic training can improve endothelial function, leading to a reduction of ischemia and an improved quality-of-life in patients with microvascular myocardial ischemia.
Resumo:
(99m)Tc-MIBI gated myocardial scintigraphy (GMS) evaluates myocyte integrity and perfusion, left ventricular (LV) dyssynchrony and function. Cardiac resynchronization therapy (CRT) may improve the clinical symptoms of heart failure (HF), but its benefits for LV function are less pronounced. We assessed whether changes in myocardial (99m)Tc-MIBI uptake after CRT are related to improvement in clinical symptoms, LV synchrony and performance, and whether GMS adds information for patient selection for CRT. A group of 30 patients with severe HF were prospectively studied before and 3 months after CRT. Variables analysed were HF functional class, QRS duration, LV ejection fraction (LVEF) by echocardiography, myocardial (99m)Tc-MIBI uptake, LV end-diastolic volume (EDV) and end-systolic volume (ESV), phase analysis LV dyssynchrony indices, and regional motion by GMS. After CRT, patients were divided into two groups according to improvement in LVEF: group 1 (12 patients) with increase in LVEF of 5 or more points, and group 2 (18 patients) without a significant increase. After CRT, both groups showed a significant improvement in HF functional class, reduced QRS width and increased septal wall (99m)Tc-MIBI uptake. Only group 1 showed favourable changes in EDV, ESV, LV dyssynchrony indices, and regional motion. Before CRT, EDV, and ESV were lower in group 1 than in group 2. Anterior and inferior wall (99m)Tc-MIBI uptakes were higher in group 1 than in group 2 (p < 0.05). EDV was the only independent predictor of an increase in LVEF (p=0.01). The optimal EDV cut-off point was 315 ml (sensitivity 89%, specificity 94%). The evaluation of EDV by GMS added information on patient selection for CRT. After CRT, LVEF increase occurred in hearts less dilated and with more normal (99m)Tc-MIBI uptake.
Resumo:
Background: Real time myocardial contrast echocardiography (RTMCE) is an emerging imaging modality for assessing myocardial perfusion that allows for noninvasive quantification of regional myocardial blood flow (MBF). Aim: We sought to assess the value of qualitative analysis of myocardial perfusion and quantitative assessment of myocardial blood flow (MBF) by RTMCE for predicting regional function recovery in patients with ischemic heart disease who underwent coronary artery bypass grafting (CABG). Methods: Twenty-four patients with coronary disease and left ventricular systolic dysfunction (ejection fraction < 45%) underwent RTMCE before and 3 months after CABG. RTMCE was performed using continuous intravenous infusion of commercially available contrast agent with low mechanical index power modulation imaging. Viability was defined by qualitative assessment of myocardial perfusion as homogenous opacification at rest in >= 2 segments of anterior or >= 1 segment of posterior territory. Viability by quantitative assessment of MBF was determined by receiver-operating characteristics curve analysis. Results: Regional function recovery was observed in 74% of territories considered viable by qualitative analysis of myocardial perfusion and 40% of nonviable (P = 0.03). Sensitivity, specificity, positive and negative predictive values of qualitative RTMCE for detecting regional function recovery were 74%, 60%, 77%, and 56%, respectively. Cutoff value of MBF for predicting regional function recovery was 1.76 (AUC = 0.77; 95% CI = 0.62-0.92). MBF obtained by RTMCE had sensitivity of 91%, specificity of 50%, positive predictive value of 75%, and negative predictive value of 78%. Conclusion: Qualitative and quantitative RTMCE provide good accuracy for predicting regional function recovery after CABG. Determination of MBF increases the sensitivity for detecting hibernating myocardium. (Echocardiography 2011;28:342-349).
Resumo:
Background We validated a strategy for diagnosis of coronary artery disease ( CAD) and prediction of cardiac events in high-risk renal transplant candidates ( at least one of the following: age >= 50 years, diabetes, cardiovascular disease). Methods A diagnosis and risk assessment strategy was used in 228 renal transplant candidates to validate an algorithm. Patients underwent dipyridamole myocardial stress testing and coronary angiography and were followed up until death, renal transplantation, or cardiac events. Results The prevalence of CAD was 47%. Stress testing did not detect significant CAD in 1/3 of patients. The sensitivity, specificity, and positive and negative predictive values of the stress test for detecting CAD were 70, 74, 69, and 71%, respectively. CAD, defined by angiography, was associated with increased probability of cardiac events [log-rank: 0.001; hazard ratio: 1.90, 95% confidence interval (CI): 1.29-2.92]. Diabetes (P=0.03; hazard ratio: 1.58, 95% CI: 1.06-2.45) and angiographically defined CAD (P=0.03; hazard ratio: 1.69, 95% CI: 1.08-2.78) were the independent predictors of events. Conclusion The results validate our observations in a smaller number of high-risk transplant candidates and indicate that stress testing is not appropriate for the diagnosis of CAD or prediction of cardiac events in this group of patients. Coronary angiography was correlated with events but, because less than 50% of patients had significant disease, it seems premature to recommend the test to all high-risk renal transplant candidates. The results suggest that angiography is necessary in many high-risk renal transplant candidates and that better noninvasive methods are still lacking to identify with precision patients who will benefit from invasive procedures. Coron Artery Dis 21: 164-167 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Aims We conducted a meta-analysis to evaluate the accuracy of quantitative stress myocardial contrast echocardiography (MCE) in coronary artery disease (CAD). Methods and results Database search was performed through January 2008. We included studies evaluating accuracy of quantitative stress MCE for detection of CAD compared with coronary angiography or single-photon emission computed tomography (SPECT) and measuring reserve parameters of A, beta, and A beta. Data from studies were verified and supplemented by the authors of each study. Using random effects meta-analysis, we estimated weighted mean difference (WMD), likelihood ratios (LRs), diagnostic odds ratios (DORs), and summary area under curve (AUC), all with 95% confidence interval (0). Of 1443 studies, 13 including 627 patients (age range, 38-75 years) and comparing MCE with angiography (n = 10), SPECT (n = 1), or both (n = 2) were eligible. WMD (95% CI) were significantly less in CAD group than no-CAD group: 0.12 (0.06-0.18) (P < 0.001), 1.38 (1.28-1.52) (P < 0.001), and 1.47 (1.18-1.76) (P < 0.001) for A, beta, and A beta reserves, respectively. Pooled LRs for positive test were 1.33 (1.13-1.57), 3.76 (2.43-5.80), and 3.64 (2.87-4.78) and LRs for negative test were 0.68 (0.55-0.83), 0.30 (0.24-0.38), and 0.27 (0.22-0.34) for A, beta, and A beta reserves, respectively. Pooled DORs were 2.09 (1.42-3.07), 15.11 (7.90-28.91), and 14.73 (9.61-22.57) and AUCs were 0.637 (0.594-0.677), 0.851 (0.828-0.872), and 0.859 (0.842-0.750) for A, beta, and A beta reserves, respectively. Conclusion Evidence supports the use of quantitative MCE as a non-invasive test for detection of CAD. Standardizing MCE quantification analysis and adherence to reporting standards for diagnostic tests could enhance the quality of evidence in this field.
Resumo:
Background: We tested the hypothesis that the universal application of myocardial scanning with single-photon emission computed tomography (SPECT) would result in better risk stratification in renal transplant candidates (RTC) compared with SPECT being restricted to patients who, in addition to renal disease, had other clinical risk factors. Methods: RTCs (n=363) underwent SPECT and clinical risk stratification according to the American Society of Transplantation (AST) algorithm and were followed up until a major adverse cardiovascular event (MACE) or death. Results: Of the 363 patients, 79 patients (22%) had an abnormal SPECT scan and 270 (74%) were classified as high risk. Both methods correctly identified patients with increased probability of MACE. However, clinical stratification performed better (sensitivity and negative predictive value 99% and 99% vs. 25% and 87%, respectively). High-risk patients with an abnormal SPECT scan had a modest increased risk of events (log-rank = 0.03; hazard ratio [HR] = 1.37; 95% confidence interval [95% CI], 1.02-1.82). Eighty-six patients underwent coronary angiography, and coronary artery disease (CAD) was found in 60%. High-risk patients with CAD had an increased incidence of events (log-rank = 0.008; HR=3.85; 95% CI, 1.46-13.22), but in those with an abnormal SPECT scan, the incidence of events was not influenced by CAD (log-rank = 0.23). Forty-six patients died. Clinical stratification, but not SPECT, correlated with the probability of death (log-rank = 0.02; HR=3.25; 95% CI, 1.31-10.82). Conclusion: SPECT should be restricted to high-risk patients. Moreover, in contrast to SPECT, the AST algorithm was also useful for predicting death by any cause in RTCs and for selecting patients for invasive coronary testing.
Resumo:
Introduction. The quality and effectiveness of myocardial protection are fundamental problems to expand the use of and consequently good outcomes of donated hearts for transplantation. Objective. The purpose of this investigation was to compare the cardioprotective effects of Krebs-Henseleit, Bretschneider-HTK, St Thomas, and Celsior solutions using a modified nonrecirculating Langendorff column model of isolated perfused rat heart during prolonged cold storage. Materials and Methods. After removal 36 rat hearts underwent isolated perfusion into a Langendorff apparatus using Krebs-Henseleit solution for a 15-minute period of recovery; we excluded organs that did not maintain an aortic pressure above 100 m Hg. Subsequently, we equally distributed the hearts into four groups according to the cardioprotection solution; group 1, Krebs-Henseleit (control); group II, Bretschneider-HTK; group III, St Thomas; and group IV, Celsior. Each heart received the specific cardioplegic solution at 10 C for 2-hour storage at 20 C, before a 15 minutes perfusion with Krebs-Henseleit solution for recovery and stabilization. After 60 additional minutes of perfusion, every 5 minutes we determined heart rate (HR), coronary flow (CF), left ventricular systolic pressure (LVSP), and positive and negative peak of the first derivative of left ventricular pressure (+dP/dt and dP/dt, respectively). Results. Comparative analysis by Turkey`s test showed the following performances among the groups at 60 minutes of reperfusion: HR: II = IV > III > I; CF: II = IV > I = III; LVSP: IV > I = II = III; +dP/dt: IV > I = II = III; and dP/dt: IV = II > I = II. Conclusion. Cardioprotective solutions generally used in clinical practice are not able to avoid hemodynamic alterations in hearts exposed to prolonged ischemia. Celsior solution showed better performance than Bretschneider-HTK, St Thomas, and Krebs-Henseleit.
Resumo:
Exercise training has been shown to be effective in improving exercise capacity and quality of life in patients with heart failure and left ventricular (LV) systolic dysfunction. Real-time myocardial contrast echocardiography (RTMCE) is a new technique that allows quantitative analysis of myocardial blood flow (MBF). The aim of this study was to determine the effects of exercise training on MBF in patients with LV dysfunction. We studied 23 patients with LV dysfunction who underwent RTMCE and cardiopulmonary exercise testing at baseline and 4 months after medical treatment (control group, n = 10) or medical treatment plus exercise training (trained group, n = 13). Replenishment velocity (0) and MBF reserves were derived from quantitative RTMCE. The 4-month exercise training consisted of 3 60-minute exercise sessions/week at an intensity corresponding to anaerobic threshold, 10% below the respiratory compensation point. Aerobic exercise training did not change LV diameters, volumes, or ejection fraction. At baseline, no difference was observed in MBF reserve between the control and trained groups (1.89, 1.67 to 1.98, vs 1.81, 1.28 to 2.38, p = 0.38). Four-month exercise training resulted in a significant increase in beta reserve from 1.72 (1.45 to 1.48) to 2.20 (1.69 to 2.77, p <0.001) and an MBF reserve from 1.81 (1.28 to 2.38) to 3.05 (2.07 to 3.93, p <0.001). In the control group, 13 reserve decreased from 1.51 (1.10 to 1.85) to 1.46 (1.14 to 2.33, p = 0.03) and MBF reserve from 1.89 (1.67 to 1.98) to 1.55 (1.11 to 2.27, p <0.001). Peak oxygen consumption increased by 13.8% after 4 months of exercise training and decreased by 1.9% in the control group. In conclusion, exercise training resulted in significant improvement of MBF reserve in patients with heart failure and LV dysfunction. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:243-248)
Resumo:
Cardiac sympathetic denervation and ventricular arrhythmia are frequently observed in chronic Chagas cardiomyopathy (CCC). This study quantitatively evaluated the association between cardiac sympathetic denervation and sustained ventricular tachycardia (SVT) in patients with CCC. Methods: We prospectively investigated patients with CCC and left ventricular ejection fraction (LVEF) greater than 35% with SVT (SVT group: n = 5 15; mean age +/- SD, 61 +/- 8 y; LVEF, 51% +/- 8%) and patients without SVT (non-SVT group: n = 11; mean age +/- SD, 55 +/- 10 y; LVEF, 57% +/- 10%). Patients underwent myocardial scintigraphy with (123)I-metaiodobenzylguanidine ((123)I-MIBG) for the evaluation of sympathetic innervation and resting perfusion with (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) for the evaluation of myocardial viability. A visual semiquantitative score was attributed for regional uptake of each radiotracer using a 17-segment left ventricular segmentation model (0, normal; 4, absence of uptake). A mismatch defect was defined as occurring in segments with a 99mTc-MIBI uptake score of 0 or 1 and a (123)I-MIBG score of 2 or more. Results: Compared with the non-SVT group, the SVT group had a similar (99m)Tc-MIBI summed score (6.9 +/- 7.5 vs. 4.4 +/- 5.2, respectively, P = 0.69) but a higher (123)I-MIBG summed score (10.9 +/- 7.8 vs. 22.4 +/- 9.5, respectively, P = 0.007) and a higher number of mismatch defects per patient (2.0 +/- 2.2 vs. 7.1 +/- 2.0, respectively, P < 0.0001). The presence of more than 3 mismatch defects was strongly associated with the presence of SVT (93% sensitivity, 82% specificity; P = 0.0002). Conclusion: In CCC, the amount of sympathetically denervated viable myocardium is associated with the occurrence of SVT. Myocardial sympathetic denervation may participate in triggering malignant ventricular arrhythmia in CCC patients with relatively well-preserved ventricular function.
Resumo:
FUNDAMENTO: A ressuscitação de parada cardíaca pode apresentar disfunção miocárdica determinada pelo tempo da isquemia, e a inibição da enzima conversora de angiotensina (ECA) pode reduzir a disfunção cardíaca durante a reperfusão. OBJETIVO: Investigar os efeitos da angiotensina-I e diferentes períodos de isquemia na recuperação funcional em corações de ratos isolados. MÉTODOS: Os corações isolados de ratos Wistar (n = 45; 250-300 g) foram submetidos a diferentes períodos de isquemia global (20, 25 ou 30 min) e reperfundidos (30 min) com o tampão Krebs-Henseleit, ou com a adição de 400 nmol/L de angiotensina-I, ou com 400 nmol/L de angiotensina-I + 100 µmol/L de captopril durante o período de reperfusão. RESULTADOS: A derivada positiva máxima de pressão (+dP/dt max) e o produto frequência-pressão foram reduzidos nos corações expostos à isquemia de 25 min (~ 73%) e à isquemia de 30 min (~ 80%) vs. isquemia de 20 min. A pressão diastólica final do ventrículo esquerdo (PDFVE) e a pressão de perfusão (PP) foram aumentadas nos corações expostos à isquemia de 25 min (5,5 e 1,08 vezes, respectivamente) e à isquemia de 30 min (6 e 1,10 vezes, respectivamente) vs. isquemia de 20 min. A angiotensina-I ocasionou uma diminuição no +dP/dt max e no produto frequência-pressão (~ 85-94%) em todos os períodos de isquemia e um aumento na PDFVE e na PP (6,9 e 1,25 vezes, respectivamente) apenas na isquemia de 20 min. O captopril foi capaz de reverter parcial ou completamente os efeitos da angiotensina-I na recuperação funcional nas isquemias de 20 e 25 min CONCLUSÃO: Os dados sugerem que a angiotensina-II participa direta ou indiretamente no dano pós-isquêmico e que a capacidade de um inibidor da ECA atenuar esse dano depende do tempo de isquemia.