138 resultados para Muscle adaptation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise
Resumo:
Eccentric exercise induces muscle damage, but controversy exists concerning the effect of contraction velocity on the magnitude of muscle damage, and little is known about the effect of contraction velocity on the repeated-bout effect. This study examined slow (60 degrees.s(-1)) and fast (180 degrees.s(-1)) velocity eccentric exercises for changes in indirect markers of muscle damage following 3 exercise bouts that were performed every 2 weeks. Fifteen young men were divided into 2 groups based on the velocity of eccentric exercise: 7 in the Ecc60 (60 degrees.s(-1)) group, and 8 in the Ecc180 (180 degrees.s(-1)) group. The exercise consisted of 30 maximal eccentric contractions of the elbow flexors at each velocity, in which the elbow joint was forcibly extended from 60 degrees to 180 degrees (full extension) on an isokinetic dynamometer. Changes in maximal voluntary isometric contraction strength, range of motion, muscle soreness, and plasma creatine kinase activity before and for 4 days after the exercise were compared in the 2 groups using a mixed-model analysis (group x bout x time). No significant differences between groups were evident for changes in any variables following exercise bouts; however, the changes were significantly smaller (p < 0.05) after the second and third bouts than after the first bout. These results indicate that the contraction velocity does not influence muscle damage or the repeated-bout effect.
Resumo:
SILVA, B. M., F. J. NEVES, M. V. NEGRÃO, C. R. ALVES, R. G. DIAS, G. B. ALVES, A. C. PEREIRA, M. Urbana A. RONDON, J. E. KRIEGER, C. E. NEGRÃO, and A. C. DA NOBREGA. Endothelial Nitric Oxide Synthase Polymorphisms and Adaptation of Parasympathetic Modulation to Exercise Training. Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1611-1618, 2011. Purpose: There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Methods: Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption ((V) over dotO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min.day(-1), during 18 wk). Results: Training increased (V) over dotO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% +/- 89% vs polymorphic (-786TC/CC) = -28% +/- 60%, median +/- quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% +/- 67% vs polymorphic (894GT/TT) = -18% +/- 59%, median +/- quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles(-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% +/- 56% vs -41% +/- 50%, median T quartile range, P = 0.04). Conclusions: The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.
Resumo:
The objective of this study was to adapt a model of hind limb immobilization to newly weaned female rats and to determine the morphology of shortened soleus and plantaris muscles. Female Wistar rats were divided into three groups: control zero (n = 3) and control and free (n = 8), animals aged 21 and 31 days, respectively, submitted to no intervention, and immobilized (n = 25), animals aged 21 days submitted to immobilization for 10 days and sacrificed at 31 days of age. The device used for immobilization had advantages such as easy connection, good fit, and low cost. The immobilized rats showed a reduction in muscle fiber area and in connective tissue. The adaptation of this immobilization model originally used for adult rats was an excellent alternative for newly weaned rats and was also efficient in inducing significant hind limb disuse.
Resumo:
OBJECTIVES: To evaluate the effect of a chewing exercise on pain intensity and pressure-pain threshold in patients with myofascial pain. METHODS: Twenty-nine consecutive women diagnosed with myofascial pain (MFP) according to the Research Diagnostic Criteria comprised the experimental group and 15 healthy age-matched female were used as controls. Subjects were asked to chew a gum stick for 9 min and to stay at rest for another 9 min afterwards. Pain intensity was rated on a visual analog scale (VAS) every 3 min. At 0, 9 and 18 min, the pressure-pain threshold (PPT) was measured bilaterally on the masseter and the anterior, medium, and posterior temporalis muscles. RESULTS: Patients with myofascial pain reported increase (76%) and no change (24%) on the pain intensity measured with the VAS. A reduction of the PPT at all muscular sites after the exercise and a non-significant recovery after rest were also observed. CONCLUSION: The following conclusions can be drawn: 1. there are at least two subtypes of patients with myofascial pain that respond differently to experimental chewing; 2. the chewing protocol had an adequate discriminative ability in distinguishing patients with myofascial pain from healthy controls.
Resumo:
PURPOSE: To analyze the effects of detachment and repositioning of the medial pterygoid muscle on the growth of the maxilla and mandible of young rats through cephalometry. METHODS: Thirty one-month-old Wistar rats were used, distributed into three groups: experimental, sham-operated and control. In the experimental group, unilateral detachment and repositioning of the medial pterygoid muscle was performed. The sham-operated group only underwent surgical access, and the control group did not undergo any procedure. The animals were sacrificed at the age of three months. Their soft tissues were removed and the mandible was disarticulated. Radiographs of the skull in axial projection and the hemimandibles in lateral projection were obtained, and cephalometry was performed. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There were significant differences in the length of the mandible relative to the angular process in the experimental group and in the height of the mandibular body in the sham-operated group. CONCLUSION: The experimental detachment and repositioning of the medial pterygoid muscle during the growth period in rats affected the growth of the angle region, resulting in asymmetry of the mandible.
Resumo:
This study analyzed the effects of the unilateral removal and dissection of the masseter muscle on the facial growth of young rats. A total of 30 one-month-old Wistar rats were used. Unilateral complete removal of the masseter muscle was performed in the removal group, and detachment followed by repositioning of the masseter muscle was performed in the dissection group, while only surgical access was performed in the sham-operated group. The animals were sacrificed at three months of age. Axial radiographic projections of the skulls and lateral projections of the hemimandibles were taken. Cephalometric evaluations were made and the values obtained were submitted to statistical analyses. In the removal group, there were contour alterations of the angular process, and a significant homolateral difference in the length of the maxilla and a significant bilateral difference in the height of the mandibular body and the length of the mandible were observed. Comparison among groups revealed significance only in the removal group. It was concluded that the experimental removal of the masseter muscle during the growing period in rats induced atrophic changes in the angular process, as well as asymmetry of the maxilla and shortening of the whole mandible.
Resumo:
PURPOSE: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. METHODS: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. RESULTS: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. CONCLUSION: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
The objective of this study is to describe preliminary results from the cross-cultural adaptation of the Quality of Life Assessment Questionnaire, used to measure health related quality of life (HRQL) in Brazilian children aged between 5 and 11 with HIV/AIDS. The cross-cultural model evaluated the Concept, Item, Semantic and Measurement Equivalences (internal consistency and intra-observer reliability). Evaluation of the conceptual, item, semantic equivalences showed that the Portuguese version is pertinent for the Brazilian context. Four of seven domains showed internal consistency above 0.70 (α: 0.76-0.90) and five of seven revealed intra-observer reliability (ricc: 0.41-0.70). This first Portuguese version of the HRQL questionnaire can be understood as a valuable tool for assessing children's HRQL, but further studies with large samples and more robust analyses are recommended before use in the Brazilian context.
Resumo:
The aim of this study was to translate, validate and verify the reliability of the Body Area Scale (BAS). Participants were 386 teenagers, enrolled in a private school. Translation into Portuguese was conducted. The instrument was evaluated for internal consistency and construct validation analysis. Reproducibility was evaluated using the Wilcoxon test and the coefficient of interclass correlation. The BAS demonstrated good values for internal consistency (0.90 and 0.88) and was able to discriminate boys and girls according to nutritional state (p = 0.020 and p = 0.026, respectively). BAS scores correlated with adolescents' BMI (r = 0.14, p = 0.055; r = 0.23, p = 0.001) and WC (r =0.13, p = 0.083; r = 0.22, 0.002). Reliability was confirmed by the coefficient of inter-class correlation (0.35, p < 0.001; 0.60, p < 0.001) for boys and girls, respectively. The instrument performed well in terms of understanding and time of completion. BAS was successfully translated into Portuguese and presented good validity when applied to adolescents.
Resumo:
The aging process is frequently characterized by an involuntary loss of muscle (sarcopenia) and bone (osteoporosis) mass. Both chronic diseases are associated with decreased metabolic rate, increased risk of falls fracture, and, as a result, increased morbidity and loss of independence in the elderly. The quality and quantity of protein intake affects bone and muscle mass in several ways and there is evidence that increased essential amino acid or protein availability can enhance muscle protein synthesis and anabolism, as well as improve bone homeostasis in older subjects. A thorough evaluation of renal function is important, since renal function decreases with age. Finally, protein and calcium intake should be considered in the prevention or treatment of the chronic diseases osteoporosis and sarcopenia
Resumo:
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.
Resumo:
This study examined forearm vasodilatation during mental challenge and exercise in 72 obese children (OC; age = 10 +/- 0.1 years) homozygous with polymorphism in the allele 27 of the beta(2)-adrenoceptors: Gln27 (n = 61) and Glu27 (n = 11). Forearm blood flow was recorded during 3 min of each using the Stroop color-word test (MS) and handgrip isometric exercise. Baseline hemodynamic and vascular measurements were similar. During the MS, peak forearm vascular conductance was significantly greater in group Glu27 (Delta = 0.35 +/- 0.4 vs. 0.12 +/- 0.1 units, respectively, p = .042). Similar results were found during exercise (Delta = 0.64 +/- 0.1 vs. 0.13 +/- 0.1 units, respectively, p = .035). Glu27 OC increased muscle vasodilatory responsiveness upon the MS and exercise.
Resumo:
Background: The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods: First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue ( experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test ( fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) ( experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results: As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.
Resumo:
Context: Patellofemoral pain syndrome (PFPS) is a common knee condition in athletes. Recently, researchers have indicated that factors proximal to the knee, including hip muscle weakness and motor control impairment, contribute to the development of PFPS. However, no investigators have evaluated eccentric hip muscle function in people with PFPS. Objective: To compare the eccentric hip muscle function between females with PFPS and a female control group. Design: Cross-sectional study. Setting: Musculoskeletal laboratory. Patients or Other Participants: Two groups of females were studied: a group with PFPS (n = 10) and a group with no history of lower extremity injury or surgery (n = 10). Intervention(s): Eccentric torque of the hip musculature was evaluated on an isokinetic dynamometer. Main Outcome Measure(s): Eccentric hip abduction, adduction, and external and internal rotation peak torque were measured and expressed as a percentage of body mass (Nm/kg x 100). We also evaluated eccentric hip adduction to abduction and internal to external rotation torque ratios. The peak torque value of 5 maximal eccentric contractions was used for calculation. Two-tailed, independent-samples t tests were used to compare torque results between groups. Results: Participants with PFPS exhibited much lower eccentric hip abduction (t(18) = -2.917, P = .008) and adduction (t(18) = -2.764, P =.009) peak torque values than did their healthy counterparts. No differences in eccentric hip external (t(18) = 0.45, P = .96) or internal (t(18) = -0.742, P =.47) rotation peak torque values were detected between the groups. The eccentric hip adduction to abduction torque ratio was much higher in the PFPS group than in the control group (t(18) = 2.113, P = .04), but we found no difference in the eccentric hip internal to external rotation torque ratios between the 2 groups (t(18) = -0.932, P = .36). Conclusions: Participants with PFPS demonstrated lower eccentric hip abduction and adduction peak torque and higher eccentric adduction to abduction torque ratios when compared with control participants. Thus, clinicians should consider eccentric hip abduction strengthening exercises when developing rehabilitation programs for females with PFPS.