5 resultados para Multicommodity network design problem
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Solving multicommodity capacitated network design problems is a hard task that requires the use of several strategies like relaxing some constraints and strengthening the model with valid inequalities. In this paper, we compare three sets of inequalities that have been widely used in this context: Benders, metric and cutset inequalities. We show that Benders inequalities associated to extreme rays are metric inequalities. We also show how to strengthen Benders inequalities associated to non-extreme rays to obtain metric inequalities. We show that cutset inequalities are Benders inequalities, but not necessarily metric inequalities. We give a necessary and sufficient condition for a cutset inequality to be a metric inequality. Computational experiments show the effectiveness of strengthening Benders and cutset inequalities to obtain metric inequalities.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Over the useful life of a LAN, network downtimes will have a negative impact on organizational productivity not included in current Network Topological Design (NTD) problems. We propose a new approach to LAN topological design that includes the impact of these productivity losses into the network design, minimizing not only the CAPEX but also the expected cost of unproductiveness attributable to network downtimes over a certain period of network operation.
Resumo:
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.