32 resultados para Modal Logics. Paranormal Logics. Fuzzy Logics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Inspired by the recent work on approximations of classical logic, we present a method that approximates several modal logics in a modular way. Our starting point is the limitation of the n-degree of introspection that is allowed, thus generating modal n-logics. The semantics for n-logics is presented, in which formulas are evaluated with respect to paths, and not possible worlds. A tableau-based proof system is presented, n-SST, and soundness and completeness is shown for the approximation of modal logics K, T, D, S4 and S5. (c) 2008 Published by Elsevier B.V.
Resumo:
The AGM theory of belief revision provides a formal framework to represent the dynamics of epistemic states. In this framework, the beliefs of the agent are usually represented as logical formulas while the change operations are constrained by rationality postulates. In the original proposal, the logic underlying the reasoning was supposed to be supraclassical, among other properties. In this paper, we present some of the existing work in adapting the AGM theory for non-classical logics and discuss their interconnections and what is still missing for each approach.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Belief Revision deals with the problem of adding new information to a knowledge base in a consistent way. Ontology Debugging, on the other hand, aims to find the axioms in a terminological knowledge base which caused the base to become inconsistent. In this article, we propose a belief revision approach in order to find and repair inconsistencies in ontologies represented in some description logic (DL). As the usual belief revision operators cannot be directly applied to DLs, we propose new operators that can be used with more general logics and show that, in particular, they can be applied to the logics underlying OWL-DL and Lite.
Resumo:
Canalizing genes possess such broad regulatory power, and their action sweeps across a such a wide swath of processes that the full set of affected genes are not highly correlated under normal conditions. When not active, the controlling gene will not be predictable to any significant degree by its subject genes, either alone or in groups, since their behavior will be highly varied relative to the inactive controlling gene. When the controlling gene is active, its behavior is not well predicted by any one of its targets, but can be very well predicted by groups of genes under its control. To investigate this question, we introduce in this paper the concept of intrinsically multivariate predictive (IMP) genes, and present a mathematical study of IMP in the context of binary genes with respect to the coefficient of determination (CoD), which measures the predictive power of a set of genes with respect to a target gene. A set of predictor genes is said to be IMP for a target gene if all properly contained subsets of the predictor set are bad predictors of the target but the full predictor set predicts the target with great accuracy. We show that logic of prediction, predictive power, covariance between predictors, and the entropy of the joint probability distribution of the predictors jointly affect the appearance of IMP genes. In particular, we show that high-predictive power, small covariance among predictors, a large entropy of the joint probability distribution of predictors, and certain logics, such as XOR in the 2-predictor case, are factors that favor the appearance of IMP. The IMP concept is applied to characterize the behavior of the gene DUSP1, which exhibits control over a central, process-integrating signaling pathway, thereby providing preliminary evidence that IMP can be used as a criterion for discovery of canalizing genes.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A fuzzy control strategy for voltage regulation in electric power distribution systems is introduced in this article. This real-time controller would act on power transformers equipped with under-load tap changers. The fuzzy system was employed to turn the voltage-control relays into adaptive devices. The scope of the present study has been limited to the power distribution substation, and both the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage control strategies that satisfy both the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. A prototype based on the fuzzy control strategy proposed in this paper has also been implemented for validation purposes and its experimental results were highly satisfactory.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25-50%.