110 resultados para Milli-scale reactor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m(3), was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO(4)(2-)/cycle (48 It - cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO(4)(2-) l(-1). Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO(4)(2-) l(-1). Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO(4)(2-) l(-1). The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
This paper describes the performance and biofilm characteristics of a full-scale anaerobic sequencing batch biofilm reactor (ASBBR; 20 m(3)) containing biomass immobilized on an inert support (mineral coal) for the treatment of industrial wastewater containing a high sulfate concentration. The ASBBR reactor was operated during 110 cycles (48 h each) at sulfate loading rates ranging from 6.9 to 62.4 kgSO(4)(2-)/cycle corresponding to sulfate concentrations of 0.58-5.2 gSO(4)(2-)/L. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. After 71 cycles the mean sulfate removal efficiency was 99%, demonstrating a high potential for biological sulfate reduction. The biofilm formed in the reactor occurred in two different patterns, one at the beginning of the colonization and the other of a mature biofilm. These different colonization patterns are due to the low adhesion of the microorganisms on the inert support in the start-up period. The biofilm population is mainly made up of syntrophic consortia among sulfate-reducing bacteria and methanogenic archaea such as Methanosaeta spp.
Resumo:
The fluidized bed reactor has successfully been used to perform biotechnological processes addressed to the production of high added value. The present work evaluates hydrodynamic parameters of a bench-scale fluidized bed reactor with cells of the yeast Candida guilliermondii immobilized either in calcium alginate beads or in polyvinyl alcohol (PVA). The effects of the following variables on cell immobilization were evaluated at 30 degrees C and feeding a synthetic medium containing 50 g L-1 xylose: total particle density (cells plus support), terminal velocity, particle drag force, minimum fluidization velocity and bed porosity. According to the results obtained, the reactor was shown to operate like a fixed-bed bioreactor at xi < 0.5 and a fluidized bed bioreactor at xi > 0.5. The maximum flow rate needed to obtain maximum bed fluidization in the reactor was equal to the terminal velocity of the immobilized cell particles. Particles of cells immobilized within these supports showed values of drag coefficient lower than those reported for other high-density supports. The evaluation of these hydrodynamic characteristics lead to an adequate bed fluidization inside the reactor, thus improving oxygen transference and availability in the fermentation medium, making the process more viable for future scale-up. (c) 2008 Society of Chemical Industry.
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, RI and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3) day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 + 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids, This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ Substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5,1.0, 2.0 and 3.0 g SW(4)(2-)L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-)L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-)L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
This experiment examined the effects of the discharge of water treatment plant (WTP) sludge into the following three types of wastewater treatment systems: a pilot-scale upflow anaerobic sludge blanket (UASB) reactor, a pilot-scale activated sludge system, and a full-scale activated sludge sequencing batch reactor (SBR). The UASB reactor received 50 mg of suspended solids ( SS) of WTP sludge per liter of wastewater in the first phase, and, in the second phase, it received 75 mg SS/L. The pilot-scale activated sludge system received 25 and 50 mg SS/L in the first and second phases, respectively. The full-scale WWTP ( SBR) received approximately 74 mg SS/L. The results of the experiments showed that, despite some negative effects on nitrification, there were positive effects on phosphorus removal, and, furthermore, there was the addition of solids in all systems. Water Environ. Res., 82, 392 ( 2010).
Resumo:
BACKGROUND: Aqueous two-phase micellar systems (ATPMS) are micellar surfactant solutions with physical properties that make them very efficient for the extraction/concentration of biological products. In this work the main proposal that has been discussed is the possible applicability and importance of a novel oscillatory flow micro-reactor (micro-OFR) envisaged for parallel screening and/or development of industrial bioprocesses in ATPMS. Based on the technology of oscillatory flow mixing (OFM), this batch or continuous micro-reactor has been presented as a new small-scale alternative for biological or physical-chemical applications. RESULTS: ATPMS experiments were carried out in different OFM conditions (times, temperatures, oscillation frequencies and amplitudes) for the extraction of glucose-6-phosphate dehydrogenase (G6PD) in Triton X-114/buffer with Cibacron Blue as affinity ligand. CONCLUSION: The results suggest the potential use of OFR, considering this process a promising and new alternative for the purification or pre-concentration of bioproducts. Despite the applied homogenization and extraction conditions have presented no improvements in the partitioning selectivity of the target enzyme, when at rest temperature they have influenced the partitioning behavior in Triton X-114 ATPMS. (C) 2011 Society of Chemical Industry
Resumo:
The objective of this work was to compare two anaerobic reactor conflgurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1-E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2-E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.