219 resultados para Metal oxide inclusion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]
Resumo:
Zirconium oxide inclusion in Bi2212 superconducting tapes and bulks was studied as possible artificial pinning centers (APC). In order to analyze the zirconium oxide APC addition in Bi2212 samples, magnetization measurements were performed in bulks and transport properties measurements were performed on tapes. In magnetization measurements, the critical current densities are proportional to the width of the magnetization loop at each applied magnetic field. Addition of ZrO(2) in Bi2212 superconductors broadened the magnetization loop and enhanced the critical current densities at 4.2 K in bulks, as a clear indication that ZrO(2) addition improved the pinning and acted as APCs. In contrast, the transport critical current densities decreased in tapes.
Resumo:
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
Charge recombination at the conductor substrate/electrolyte interface has been prevented by using efficient blocking layers of TiO(2) compact films in dye-sensitized solar cell photoanodes. Compact blocking layers have been deposited before the mesoporous TiO(2) film by the layer-by-layer technique using titania nanoparticles as cations and sodium sulfonated polystyrene, PSS, as a polyanion. The TiO(2)/PSS blocking layer in a DSC prevents the physical contact of FTO and the electrolyte and leads to a 28% increase in the cell`s overall conversion efficiency, from 5.7% to 7.3%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.
Resumo:
The triruthenium carboxylate cluster [Ru(3)O(OAc)(6)(py)(2)(bpp)](+) (OAc = acetate) containing the bridging 1,3-bis(4-pyridyl)propane (bpp) ligand, and its dimeric species [{Ru(3)O(OAc)(6)(py(2))}(2)(mu-bpp)](2+) were synthesized in order to investigate their inclusion compounds with beta-cyclodextrin (beta-CD). Characterization of the complexes was carried out based on spectroscopic, electrochemical and spectroelectrochemical techniques, while the formation of inclusion complexes was evaluated using (1)H NMR/NOESY spectroscopy. Since bpp is a flexible ligand, a DFT study was carried out in order to characterize its conformational isomers and their possible role in the host-guest chemistry with beta-CD. Instead of observing the formation of inclusion compounds with different stoichiometries, we observed the formation of 1:1 bpp/beta-CD compounds in which the bpp ligand assumes different conformations. The assembly of polymetallic rotaxane species was successfully demonstrated by monitoring the (1)H NMR spectra of the monomeric cluster species in the presence of aquapentacyanoferrate(II) ions and beta-CD.
Resumo:
Objective: This in vitro study evaluated the influence of the surface pretreatment of a feldspathic ceramic on the shear bond strength of two different resin cements. Background Data: Although several conventional surface treatments have been used on feldspathic ceramic, few studies have investigated the effects of an alternative surface treatment, the association of aluminum oxide sandblasting with Nd:YAG and Er:YAG lasers. Methods: Sixty samples made of a feldspathic ceramic were divided into three groups (n = 20) and treated with (1) controlled-air abrasion with Al(2)O(3) + 10% hydrofluoric acid (HF), (2) Al(2)O(3) + Er:YAG laser, and (3) Al(2)O(3) + Nd:YAG laser. Afterward, silane (Dentsply) was applied on each treated surface. Each of the three main groups was divided into two subgroups (n = 10), where a different resin cement was employed for each subgroup. It was built a cylinder with resin cement (RelyX Arc) in subgroup (A) and with self-adhesive cement (RelyX U100) in subgroup (B). After 24 h at 37 degrees C, the prepared specimens were submitted to shear bond strength test and stereoscopic evaluation to determine the type of failure. Results: Bond strength mean values were not statistically significant for the surface treatment methods or resin cements. Conclusion: The null surface treatment proposed with aluminum oxide sandblasting associated with the Er:YAG or Nd:YAG laser and using cementation with self-adhesive cement can be an alternative bonding technique for feldspathic ceramic, since it was as effective as the conventional treatment with aluminum oxide sandblasting and hydrofluoric acid using the conventional resin cement.
Resumo:
The impact of the titanium nitride (TIN) gate electrode thickness has been investigated in n and p channel SOI multiple gate field effect transistors (MuGFETs) through low frequency noise charge pumping and static measurements as well as capacitance-voltage curves The results suggest that a thicker TIN metal gate electrode gives rise to a higher EOT a lower mobility and a higher interface trap density The devices have also been studied for different back gate biases where the GIFBE onset occurs at lower front-gate voltage for thinner TIN metal gate thickness and at higher V(GF) In addition it is demonstrated that post deposition nitridation of the MOCVD HfSiO gate dielectric exhibits an unexpected trend with TIN gate electrode thickness where a continuous variation of EOT and an increase on the degradation of the interface quality are observed (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A new approach to electrochromics, based on the reversible coating-dissolution of an oxide from an inorganic electrochromic electrolyte consisting of a silver-amine complex in a polymer electrolyte (PEO), has proven successful. The reversible electrodeposition of silver onto indium-tin oxide coated glass (ITO) was investigated and the influence of HClO(4) and KI was evaluated. Several characteristics of the electrolyte Ag-PEO make it suitable for use in electrochromic reversible silver electrodeposition devices, such as visible absorption spectrum with an absorbance variation of 60%, an electrochromic efficiency of 5.2 cm(2) C(-1) and an ionic conductivity 4.4 x 10(-4) S cm(-1). The addition of perchloric acid improved the transparency of Ag-PEO, and potassium iodide (KI) was fundamental in setting up the process of reversible silver electrodeposition in the PEO polymeric matrix. A description of the electrochemical processes implied is presented. A number of approaches focusing on the improvement of system performance are tested. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py = pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600 nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2 h of incubation. The complex with concentrations lower than 1 x 10(-4) M did not show toxicity in B16-F 10 murine cells. The complex in solution is toxic at higher concentrations (> 1 x 10(-3) M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by radiation with light only. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Statement of problem. There are no established clinical procedures for bonding zirconia to tooth structure using resin cements. Purpose. The purpose of this study was to evaluate the influence of metal primers, resin cements, and aging on bonding to zirconia. Material and methods. Zirconia was treated with commercial primers developed for bonding to metal alloys (Metaltite, Metal Primer II, Alloy Primer or Totalbond). Non-primed specimens were considered as controls. One-hundred disk-shaped specimens (19 x 4 mm) were cemented to composite resin substrates using Panavia or RelyX Unicem (n=5). Microtensile bond strength specimens were tested after 48 hours and 5 months (150 days), and failure modes were classified as type 1 (between ceramic/cement), 2 (between composite resin/cement) or 3 (mixed). Data were analyzed by 3-way ANOVA and Multiple Comparison Tukey test (alpha=.05). Results. The interactions primer/luting system (P=.016) and luting system/storage time (P=.004) were statistically significant. The use of Alloy Primer significantly improved the bond strength of RelyX Unicem (P<.001), while for Panavia, none of the primers increased the bond strength compared to the control group. At 48 hours, Panavia had statistically higher bond strength (P=.004) than Unicem (13.9 +/- 4.4MPa and 10.2 +/- 6.6MPa, respectively). However, both luting systems presented decreasing, statistically similar; values after aging (Panavia: 3.6 +/- 2.2MPa; Unicem: 6.1 +/- 5.3MPa). At 48 hours, Alloy Primer/Unicem had the lowest incidence of type 1 failure (8%). After aging, all the groups showed a predominance of type 1 failures. Conclusions. The use of Alloy Primer improved bond strength between RelyX Unicem and zirconia. Though the initial values obtained with Panavia were significantly higher than RelyX Unicem, after aging, both luting agents presented statistically similar performances. (J Prosthet Dent 2011;105:296-303)
Resumo:
Microwave techniques were applied to the study of dielectric properties of phosphate glasses on the basis of contributions from permanent and induced dipolar polarization of local structural units interacting with the electrical component of the electromagnetic radiation. The dielectric constant of the selected glass system (100-x)(50P(2)O(5)center dot 25Li(2)O center dot 25Na(2)O)center dot xFe(2)O(3), where 0 <= x <= 21 is in mol%, was measured using a microwave setup assembled to measure the phase shift of the standing wave pattern produced by the insertion of the sample. It is shown that the Fe2+ ions contribute effectively to the dielectric constant, as expected from the interactions of the dipoles of the local charge compensation pairs with the microwave radiation. However, there is the possibility of occurrence of some ions Fe3+, in general, at low iron content, which reinforces the glass structure and, therefore, decreases the dielectric constant. There is a gradual conversion from Fe3+ to Fe2+ as the iron ions increases. This is possibly the reason of the anomaly in the dielectric constant values observed in the results. These assumptions can be checked by results of electronic paramagnetic resonance (EPR) and optical absorption (OA). The dielectric constant of the glasses studied in this work was found to increase with the temperature in the range of 25-330 degrees C. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.