7 resultados para Metal ceramic-alloys
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: This study aimed to compare the cytotoxicity of base-metal dental alloys and to evaluate if the casting method could influence their cytotoxicity. Methods: Disks of base-metal dental alloys were cast by two methods: plasma, under argon atmosphere, injected by vacuum-pressure; and oxygen-gas flame, injected by centrifugation, except Ti-6Al-4V and commercially pure titanium (cpTi), cast only by plasma. SCC9 cells were cultured in culture media D-MEM/Ham`s F12 supplemented, at 37 degrees C in a humidified atmosphere of 5% carbon dioxide and 95% air, on the previously prepared disks. At subconfluence in wells without disks (control), cell number and viability were evaluated. Results: In plasma method, cpTi and Ti-6Al-4V were similar to control and presented higher number of cells than all other alloys, followed by Ni-Cr. In oxygen-gas name method, all alloys presented fewer cells than control. Ni-Cr presented more cells than any other alloy, followed by Co-Cr-Mo-W which presented more cells than Ni-Cr-Ti, Co-Cr-Mo, and Ni-Cr-Be. There were no significant differences between casting methods related to cell number. Cell viability was not affected by either chemical composition or casting methods. Conclusion: cpTi and Ti-6Al-4V were not cytotoxic while Ni-Cr-Be was the most cytotoxic among tested alloys. The casting method did not affect cytotoxicity of the alloys. (c) 2007 Wiley Periodicals, Inc.
Resumo:
This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. Color stability is an important factor to ensure the long-term clinical success of ceramic restorations. There is a lack of information on how color is affected by fabrication procedures, such as the number of firings. Purpose. The purpose of this study was to evaluate the effects that the number of firings and type of substrate have on the color stability of dental ceramic submitted to artificial accelerated aging. Material and methods. Sixty specimens were fabricated: 30 metal ceramic (Verabond II + IPS d.SIGN) and 30 all-ceramic (IPS d.SIGN). Specimens were divided into 3 groups (n=10), and submitted to 2, 3, or 4 firings (+/- 900 degrees C), respectively, according to the manufacturer`s instructions. Color readings were obtained with a spectro photometer before and after artificial accelerated aging, and L*, a*, and b* coordinates and total color variation (Delta E) were analyzed (2-way ANOVA, Bonferroni, (alpha=05). Results. For metal ceramic specimens, differences for the L* coordinates were significant (P<.05) only for the group submitted to 3 firings. With respect to the all-ceramic specimens, smaller L* coordinates were obtained for greater a* and b* coordinates, indicating that the greater the number of firings, the darker and more reddish/yellowish the specimen. All Delta E values, for all groups, were below 1.0. All-ceramic specimens submitted to 3 and 4 firings presented Delta E means differing statistically (P<.05) from those of the metal ceramic group. Conclusions. The type of substrate and number of firings affected the color stability of the ceramic material tested. Artificial accelerated aging did not produce perceptible color stability changes (Delta E<1.0). (J Prosthet Dent 2009-101:13-18)
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
When a multilayered material is analyzed by means of energy-dispersive X-ray fluorescence analysis, then the X-ray ratios of K alpha/K beta, or L alpha/L beta and L alpha/L gamma, for an element in the multilayered material, depend on the composition and thickness of the layer in which the element is situated, and on the composition and thickness of the superimposed layer (or layers). Multilayered samples are common in archaeometry, for example, in the case of pigment layers in paintings, or in the case of gilded or silvered alloys. The latter situation is examined in detail in the present paper, with a specific reference to pre-Columbian alloys from various museums in the north of Peru. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.