116 resultados para Mammalian Spermatozoa
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sperm-mediated gene transfer (SMGT) is a fast and low-cost method used to produce transgenic animals. The objective of this study was to evaluate the effects of the concentration of exogenous DNA and the duration of incubation on DNA uptake by bovine spermatozoa and subsequently the integrity of sperm DNA and sperm apoptosis. Spermatozoa (5 X 10(6) cells/mL) were incubated with 100, 300, or 500 ng of exogenous DNA (pEYFP-Nuc plasmid) for 60 or 120 min at 39 degrees C. The amount of exogenous DNA associated with spermatozoa was quantified by real-time PCR, and the percentages of DNA fragmentation in spermatozoa were evaluated using SCSA and a TUNEL assay, coupled with flow cytometry. Uptake of exogenous DNA increased significantly as incubation increased from 60 to 120 min (0.0091 and 0.028 ng, respectively), but only when the highest exogenous DNA concentration (500 ng) was used (P < 0.05). Based on SCSA and TUNEL assays, there was no effect of exogenous DNA uptake or incubation period on sperm DNA integrity. In conclusion, exogenous DNA uptake by bovine spermatozoa was increased with the highest exogenous DNA concentration and longest incubation period, but fragmentation of endogenous DNA was apparently not induced. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: The establishment of an in vitro production (IVP) of embryo in swine allows the generation of embryos with the same quality as in vivo produced embryos with less costs and time. In order to achieve successful fertilization under normal circumstances in vivo, mammalian spermatozoa must first undergo capacitation and then acrosome reaction. The purpose of this study was compared the efficacious of IP/CFDA fluorescence and Coomassie Blue G (CB) staining to detect capacitated sperm cells in refrigerated and fresh semen. Morever, it was investigated the efficacious of caffeine and chondroitin sulphate to promote in vitro sperm capacitation and in vitro embryo produced (IVP) of swine embryos. Materials, Methods & Results: A sperm-rich fraction from ejaculate was obtained using the gloved-hand method and the gel-free fraction was separated using sterile gauze. The semen was diluted in BTS at a final concentration of 1.5 x 10(8) cells/mL. The sperm suspension was incubated for 2 h at 25 degrees C, refrigerated and maintained for 1 h at 15-18 degrees C (refrigerated group) or used immediately (fresh group). Sperm capacitation was assessed by IP/CFDA fluorescence and CB staining for both fresh and refrigerated semen. For PI/CFDA evaluation, a final solution containing 1.7 mM formaldehyde, 7.3 mM PI and 20 mM CFDA in 950 mu L saline was prepared. In the dark, 40 mu L PI/CFDA final solution was added to 10 mu L semen and after 8 min, slides were analyzed on epifluorescence microscopy. For CB evaluation, sperm cells were fixed in 4% paraformaldehyde for 10 min and centrifuged twice at 320 x g in ammonium acetate pH 9 for 8 min. A smear was made and stained with 2.75 mg/mL CB in solution containing 12.5% methanol, 25% glacial acetic acid and 62.5% water, for 2 min. The smear was washed in running water, air dried and sealed with Permount (R), diluted 2:1 in xilol to avoid staining oxidation. Our results showed that refrigeration did not affect sperm capacitation and comparing staining methods, the PI/CFDA combination was more efficient to detect capacitated sperm, when compared to CB staining. In experiment 2, we evaluated the effect of different incubation time (1 - 5 h) with chondroitin sulfate and caffeine on sperm capacitation. For in vitro fertilization, oocytes were obtained from slaughterhouse ovaries. Oocytes with a thick and intact cumulus oophurus layer and cytoplasm with homogenous granules were selected for in vitro maturation for 44 h. According to the results of experiment 2, it was used for in vitro fertilization refrigerated semen was capacitated with 50 mu g/mL chondroitin sulfate for 2 h or capacitated with 5 mu g/mL caffeine for 3 h. Six hours after insemination, cumulus oophorus cells were mechanically removed and oocytes were washed and incubated in microdrops of culture medium. Embryo development after fertilization with sperm capacitated with caffeine or chondroitin sulfate was evaluated on days 3, 5 and 7 of culture. No differences were observed in days 3 or 5 of in vitro culture. However, it was observed an increase on blastocyst rate on Day 7 of culture when caffeine was used as the capacitor agent. Discussion: Molecular basis of sperm capacitation is still poor understood. Sperm capacitation can occur in vitro spontaneously in defined media without addition of biological fluids. We observed that sperm capacitation increased as incubation period enlarged and it was observed using Coomassie blue G and PI/CFDA for fresh semen and for refrigerated semen. It can be concluded that the cooling of semen did not change their pattern of sperm capacitation and this is best assessed by IP/CFDA than by CB. In addition to the use of caffeine in sperm capacitation produces more blastocysts than the chondroitin sulfate after in vitro fertilization.
Resumo:
The aim of this study was to assess the effect of exogenous DNA and incubation time on the viability of bovine sperm. Sperm were incubated at a concentration of 5 x 10(6)/ml with or without plasmid pEYFP-NUC. Fluorescent probes, propidium iodide/Hoechst 33342, FITC-PSA and JC-1, were used to assess plasma membrane integrity (PMI), acrosome membrane integrity (AMI) and mitochondrial membrane potential (MMP) respectively at 0, 1, 2, 3 and 4 h of incubation. Exogenous DNA addition did not affect sperm viability; however, incubation time was related to sperm deterioration. Simultaneous assessment of PMI, AMI and MMP showed a reduction in the number of sperm with higher viability (integrity of plasma and acrosome membranes and high mitochondrial membrane potential) from 58.7% at 0 h to 7.5% after 4 h of incubation. Lower viability sperm (damaged plasma and acrosome membranes and low mitochondrial membrane potential) increased from 4.6% at 0 h to 25.99% after 4 h of incubation. When PMI, AMI and MMP were assessed separately we noticed a reduction in plasma and acrosome membrane integrity and mitochondrial membrane potential throughout the incubation period. Therefore, exogenous DNA addition does not affect sperm viability, but the viability is reduced by incubation time.
Resumo:
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) encompasses the whole spectrum of steatosis, nonalcoholic steatohepatitis (NASH), and NASH-related cirrhosis (NASH/Cir). Although molecular advances have been made in this field, the pathogenesis of NAFLD is not completely understood. The gene expression profiling associated to NASH/Cir was assessed, in an attempt to better characterize the pathways involved in its etiopathogenesis. Methods: In the first step, we used cDNA microarray to evaluate the gene expression profiles in normal liver (n=3) and NASH/Cir samples (n=3) by GeneSifter (TM) analysis to identify differentially expressed genes and biological pathways. Second, tissue microarray was used to determine immunohistochemical expression of phosphorylated mTOR and 4E-BP1 in 11 normal liver samples, 10 NASH/Cir samples and in 37 samples of cirrhosis of other etiologies to further explore the involvement of the mTOR pathway evidenced by the gene expression analysis. Results: 138 and 106 genes were, respectively, up and down regulated in NASH/Cir in comparison to normal liver. Among the 9 pathways identified as significantly modulated in NASH/Cir, the participation of the mTOR pathway was confirmed, since expression of cytoplasmic and membrane phospho-mTOR were higher in NASH/Cir in comparison to cirrhosis of other etiologies and to normal liver. Conclusions: Recent findings have suggested a role for the cellular ""nutrient sensor"" mTOR in NAFLD and the present study corroborates the participation of this pathway in NASH/Cir. Phospho-mTOR evaluation might be of clinical utility as a potential marker for identification of NASH/Cir in cases mistakenly considered as cryptogenic cirrhosis owing to paucity of clinical data.
Resumo:
Ticks use bloodmeals as a Source of nutrients and energy to molt and survive until the next meal and to oviposit, in the case of females. However, only the larvae of some tick species are known to feed upon bats females are obligatorily autogenous, and nymphal stages are believed to not feed. We investigated the presence of blood ill a natural population of nymphal Antricola delacruzi ticks collected from bat guano; their ability to feed upon laboratory hosts: and the microscopic structure of both salivary glands and gut. DNA amplification of gut contents of freshly collected material was positive for a mammal in 4 of 11 first instar nymphs, but we were unsuccesful in the amplification of host bloodmeal DNA from late instar nymphs. All early nymphal stages (n = 10) fed oil rabbits. and host DNA was detected and sequenced from gut contents. However, all the large nymphs (n = 10) rejected feeding, and host DNA remained undetected in these ticks. All stages of A. delacruzi have salivary glands similar in morphology to the ixodid agranular Type I salivary gland acini and to granular Type II or Type B acini. All stages of A. delacruzi had a similar gut structure. consisting of digestive cells in the basal portion that contained hematin granules. Neither regenerative nor secretory cell traces were observed in the sections Of gut.
Resumo:
This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms. Muscle Nerve 42: 778-787,2010
Resumo:
Contents This study aimed to evaluate the effect of the exogenous recombinant bovine somatotropin (rbST) on plasma concentrations of insulin-like growth factor I (IGF-I), insulin and semen quality of bulls. Twenty bulls (Aberdeen Angus and Brangus) were divided by breed into two groups. Placebo group was injected with NaCl 0.9% (s.c.) and treatment group with rbST (s.c., 500 mg) at days 0 and 14 of the experiment. Immediately after semen collection, blood samples were taken on days 0, 14, 28, 42 and 56 of the experiment. Semen was also collected on day 70 of the experiment. Evaluation of sperm motility was performed at pre-freezing and post-thawing stage, whereas assessment of sperm membrane integrity was performed after freezing and thawing. Analysis of data revealed that the effect of treatment and treatment-by-collection day on plasma concentrations of IGF-I and insulin was not significant. However, mean plasma concentrations of IGF-I and insulin were affected (p < 0.0001) by days of blood sampling. Effect of treatment and treatment-by-collection day on motility of spermatozoa was similar (p > 0.05) at pre-freezing and post-thawing stage. Intactness of plasmalemma and tail membrane of spermatozoa at post-thawing stage was higher (p < 0.05) in rbST-treated group than in control. In conclusion, rbST did not affect plasma concentrations of IGF-I and insulin, however, it did improve post-thaw sperm membrane integrity.
Resumo:
Increased amounts of reactive oxygen species (ROS) during in vitro fertilization (IVF) may cause cytotoxic damage to gametes, whereas small amounts of ROS favour sperm capacitation. The aim of this study was to investigate the effect of antioxidants [50 mu M beta-mercaptoethanol (beta-ME) and 50 mu M cysteamine (Cyst)] or a pro-oxidant (5 mm buthionine sulfoximine) on the quality and penetrability of spermatozoa into bovine oocytes and on the subsequent embryo development and quality when added during IVF. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes, and mitochondrial function, was diminished (p < 0.05) after 4-h culture in the presence of antioxidants. Oocyte penetration rates were similar between treatments (p > 0.05), but antioxidants adversely affected the normal pronuclear formation rates (p < 0.05). The incidence of polyspermy was high for beta-ME (p < 0.05). No differences were observed in cleavage rates between treatments (p > 0.05). However, the developmental rate to the blastocyst stage was adversely affected by Cyst treatment (p < 0.05). The quality of embryos that reached the blastocyst stage, evaluated by total, inner cell mass (ICM) and trophectoderm cell numbers and ICM/total cell ratio was unaffected (p > 0.05) by treatments. The results indicate that ROS play a role in the fertilizing capacity in bovine spermatozoa, as well as in the interaction between the spermatozoa and the oocytes. It can be concluded that supplementation with antioxidants during IVF procedures impairs sperm quality, normal pronuclear formation and embryo development to the blastocyst stage.
Resumo:
Objective: To study the effect of freeze-thaw on embryos derived from intracytoplasmic sperm injection (ICSI) using surgically retrieved and ejaculated spermatozoa. Design: Retrospective study. Setting: Private IVF center. Patient(s): Three hundred eighty-three patients undergoing frozen-thawed ET cycles. Intervention(s): Testicular sperm aspiration (TESA) or percutaneous epididymal sperm aspiration (PESA) were the sperm surgical retrieval methods used for ICSI. Embryos resulting from ICSI using Surgically retrieved and ejaculated spermatozoa were frozen, thawed, and transferred. Main Outcome Measure(s): Post-thaw survival, implantation, and pregnancy rates. Result(s): No differences were found between the ejaculated sperm and TESA/PESA groups in terms of post-thaw survival rate (68.4% vs. 66.1%, respectively), pregnancy rate (20.1% vs. 16.1%), and implantation rate (10.6% vs. 12.7%). Similar results were found for those variables when comparing TESA and PESA groups. Conclusion(s): Cleavage embryos arising from ICSI cycles using testicular and epididymal spermatozoa can be frozen with survival, pregnancy,and implantation rates comparable to those obtained with ejaculated spermatozoa. (Fertil Steril (R) 2009;91:727-32. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
The advantages of using cryopreserved semen in equine reproduction are well known. During cryopreservationl spermatozoa undergo many changes that lead to a decrease in fertility. There is no agreement on the ideal sperm dose and concentration to maximize fertility rates. Thus, the objectives of this experiment were to evaluate sperm motion by computer-assisted analysis (CASA), sperm membrane integrity and function with fluorescence probes of cryopreserved sperm at three concentrations: 100 (C100), 200 (C200) and 400 x 10(6) sperm/mL (C400), and two straw volumes (0.50 and 0.25 mL). There was no interaction between sperm concentration and storage volume (P > .05). Sperm motion characteristics were influenced by concentration (C100 > C200 > C400; P < .05). Curvilinear velocity (VCL) in 0.25-mL straws had higher average values (P < .05). Membrane integrity and function were not changed by straw volume (P > .05). However, sperm concentration changed the percentage of cells with intact plasma membrane (C100 > C200 > C400; P < .05) and the percentage of cells with high mitochondrial membrane potential (C100 = C200; P > .05 and C400 < C100 and C200; P < .05). According to this experiment, the best freeing method was that involving 100 x 10(6) sperm/mL, regardless of straw volume.
Resumo:
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.
Resumo:
Changes in patterns and magnitudes of integration may influence the ability of a species to respond to selection. Consequently, modularity has often been linked to the concept of evolvability, but their relationship has rarely been tested empirically. One possible explanation is the lack of analytical tools to compare patterns and magnitudes of integration among diverse groups that explicitly relate these aspects to the quantitative genetics framework. We apply such framework here using the multivariate response to selection equation to simulate the evolutionary behavior of several mammalian orders in terms of their flexibility, evolvability and constraints in the skull. We interpreted these simulation results in light of the integration patterns and magnitudes of the same mammalian groups, described in a companion paper. We found that larger magnitudes of integration were associated with a blur of the modules in the skull and to larger portions of the total variation explained by size variation, which in turn can exert a strong evolutionary constraint, thus decreasing the evolutionary flexibility. Conversely, lower overall magnitudes of integration were associated with distinct modules in the skull, to smaller fraction of the total variation associated with size and, consequently, to weaker constraints and more evolutionary flexibility. Flexibility and constraints are, therefore, two sides of the same coin and we found them to be quite variable among mammals. Neither the overall magnitude of morphological integration, the modularity itself, nor its consequences in terms of constraints and flexibility, were associated with absolute size of the organisms, but were strongly associated with the proportion of the total variation in skull morphology captured by size. Therefore, the history of the mammalian skull is marked by a trade-off between modularity and evolvability. Our data provide evidence that, despite the stasis in integration patterns, the plasticity in the magnitude of integration in the skull had important consequences in terms of evolutionary flexibility of the mammalian lineages.