120 resultados para Magnetic levitation vehicles.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
The South Atlantic Magnetic Anomaly (SAMA) is one of the most outstanding anomalies of the geomagnetic field. The SAMA secular variation was obtained and compared to the evolution of other anomalies using spherical harmonic field models for the 1590-2005 period. An analysis of data from four South American observatories shows how this large scale anomaly affected their measurements. Since SAMA is a low total field anomaly, the field was separated into its nondipolar, quadrupolar and octupolar parts. The time evolution of the non-dipole/total, quadrupolar/total and octupolar/total field ratios yielded increasingly high values for the South Atlantic since 1750. The SAMA evolution is compared to the evolution of other large scale surface geomagnetic features like the North and the South Pole and the Siberia High, and this comparison shows the intensity equilibrium between these anomalies in both hemispheres. The analysis of non-dipole fields in historical period suggests that SAMA is governed by (i) quadrupolar field for drift, and (ii) quadrupolar and octupolar fields for intensity and area of influence. Furthermore, our study reinforces the possibility that SAMA may be related to reverse fluxes in the outer core under the South Atlantic region.
Resumo:
We report magnetic and EPR (electron paramagnetic resonance) spectroscopy studies of [Cu2(flu)4(dmf)2] (flu = flufenamate and dmf = dimethylformamide), which has CuII ions in tetracarboxylate "paddle wheel" dinuclear units. Susceptibility measurements at 10 < T < 275 K allowed the evaluation of an antiferromagnetic intradinuclear exchange coupling J0 = -294 ± 5 cm-1 between CuII ions (Hex = "J0 S1·S2). EPR experiments at 300 K in powder and single-crystals at 9.5 and 34.4 GHz indicated g// = 2.373, g⊥ = 2.073 and zero field splitting parameters D = (-0.334 ± 0.001) cm"1 and E ca. 0. EPR signal intensity measurements at X-band in the range 4 < T < 295 K indicated that J0 = "283 ± 5 cm"1. A higher limit |J´| < 5×10-3 cm-1 for the interdinuclear exchange coupling between neighbor units at ca.14.24 Å was estimated from the angular variation of the single crystal spectra around the magic angles. The results are discussed in terms of the structure of the dinuclear unit and the bridges connecting CuII ions and compared with values reported for similar compounds.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.
Resumo:
Leukemia incidence in children has increased worldwide in recent decades, particularly due to the rise in acute lymphoblastic leukemia. Studies have associated exposure to non-ionizing radiation generated by low frequency magnetic fields with childhood leukemia. The current article reviews the case-control studies published on this subject. Of 152 articles tracked in different databases, ten studies from North America, Asia, and Europe met the defined selection criteria, with patients diagnosed from 1960 to 2004. Methodological limitations were observed in these articles, including difficulties with the procedures for assessing exposure. An association may exist between exposure to low frequency magnetic fields and acute lymphoblastic leukemia in children, but this association is weak, preventing the observation of consistency in the findings. Future studies from a wider range of geographic regions should focus on the analysis of acute lymphoblastic leukemia, which is the subtype with the greatest impact on the increasing overall incidence of childhood leukemia.
Resumo:
Deformation leads to a hardening of steel due to an increase in the density of dislocations and a reduction in their mobility, giving rise to a state of elevated residual stresses in the crystal lattice. In the microstructure, one observes an increase in the contribution of crystalline orientations which are unfavorable to the magnetization, as seen, for example, by a decrease in B(50), the magnetic flux density at a field of 50 A/cm. The present study was carried out with longitudinal strips of fully processed non-oriented (NO) electrical steel, with deformations up to 70% resulting from cold rolling in the longitudinal direction. With increasing plastic deformation, the value of B(50) gradually decreases until it reaches a minimum value, where it remains even for larger deformations. On the other hand, the coercive field H(c) continually increases. Magnetometry results and electron backscatter diffraction results are compared and discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560895]
Resumo:
Luminescence properties of Eu(3+) doped germanate glasses containing either silver or gold nanoparticles (NPs) were investigated for excitation at 405 nm. Enhanced emissions and luminescence quenching of the Eu(3+) transitions in the range from 570 to 720 nm were observed for samples having various concentrations of metallic NPs. Electric-dipole and magnetic-dipole transitions that originate from the Eu(3+) level (5)D(0) exhibit large enhancement due to the presence of the metallic NPs. The results suggest that the magnetic response of rare-earth doped metal-dielectric composites at optical frequencies can be as strong as their electric response due to the confinement of the optical magnetic field. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431347]
Resumo:
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich's tumors by the magnetohyperthermia procedure. Methods and materials: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed. Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS). Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.
Resumo:
Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications. (C) 2010 Optical Society of America
Resumo:
Objective To test the hypothesis that 12-lead ECG QRS scoring quantifies myocardial scar and correlates with disease severity in Chagas' heart disease. Design Patients underwent 12-lead ECG for QRS scoring and cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) to assess myocardial scar. Setting University of Sao Paulo Medical School, Sao Paulo, Brazil. Patients 44 Seropositive patients with Chagas' disease without a history of myocardial infarction and at low risk for coronary artery disease. Main outcome measures Correlation between QRS score, CMR-LGE scar size and left ventricular ejection fraction. Relation between QRS score, heart failure (HF) class and history of ventricular tachycardia (VT). Results QRS score correlated directly with CMR-LGE scar size (R=0.69, p<0.0001) and inversely with left ventricular ejection fraction (R=-0.54, p=0.0002), which remained significant in the subgroup with conduction defects. Patients with class II or III HF had significantly higher QRS scores than those with class I HF (5.1 +/- 3.4 vs 2.1 +/- 3.1 QRS points (p=0.002)) and patients with a history of VT had significantly higher QRS scores than those without a history of VT (5.3 +/- 3.2% vs 2.6 +/- 3.4 QRS points (p=0.02)). A QRS score >= 2 points had particularly good sensitivity and specificity (95% and 83%, respectively) for prediction of large CMR-LGE, and a QRS score >= 7 points had particularly high specificity (92% and 89%, respectively) for predicting significant left ventricular dysfunction and history of VT. Conclusions The wide availability of 12-lead ECG makes it an attractive screening tool and may enhance clinical risk stratification of patients at risk for more severe, symptomatic Chagas' heart disease.
Resumo:
Objectives: Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naive children with MDD to determine whether abnormalities of OFC are present early in the illness course. Methods: Twenty seven medication naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. Results: There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. Conclusions: The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.