5 resultados para MacAdam ellipses

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioelectrical impedance vector analysis (BIVA) is a new method that is used for the routine monitoring of the variation in body fluids and nutritional status with assumptions regarding body composition values. The aim of the present study was to determine bivariate tolerance intervals of the whole-body impedance vector and to describe phase angle (PA) values for healthy term newborns aged 7-28 d. This descriptive cross-sectional study was conducted on healthy term neonates born at a low-risk public maternity. General and anthropometric neonatal data and bioelectrical impedance data (800 mu A-50 kHz) were obtained. Bivariate vector analysis was conducted with the resistance-reactance (RXc) graph method. The BIVA software was used to construct the graphs. The study was conducted on 109 neonates (52.3% females) who were born at term, adequate for gestational age, exclusively breast-fed and aged 13 (SD 3.6) d. We constructed one standard, reference, RXc-score graph and RXc-tolerance ellipses (50, 75 and 95 %) that can be used with any analyser. Mean PA was 3.14 (SD 0.43)degrees (3.12 (SD 0.39)degrees for males and 3.17 (SD 0.48)degrees for females). Considering the overlapping of ellipses of males and females with the general distribution, a graph for newborns aged 7-28 d with the same reference tolerance ellipse was defined for boys and girls. The results differ from those reported in the literature probably, in part, due to the ethnic differences in body composition. BIVA and PA permit an assessment without the need to know body weight and the prediction error of conventional impedance formulas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system`s overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules Must keep safe pairwise distances. Obtaining Such a molecular arrangement can be considered it packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules Must be greater than some specified tolerance. We have developed a code able to pack millions of atoms. grouped in arbitrarily complex molecules, inside a variety of three-dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straight forward. In addition. different atoms belonging to the same molecule may also be restricted to different spatial regions, in Such a way that more ordered molecular arrangements call be built, as micelles. lipid double-layers, etc. The packing time for state-of-the-art molecular dynamics systems varies front a few seconds to a few Minutes in a personal Computer. The input files are simple and Currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and call be downloaded front http://www.ime.unicamp.br/similar to martinez/packmol/. (C) 2009 Wiley Periodicals. Inc. J Comput Chem 30: 2157-2164, 2009