34 resultados para MORPHOGENESIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Aims: Myoepithelial cells are important components of salivary gland structure, aiding the expulsion of saliva from acinar lobules. The aim was to evaluate the expression of smooth muscle actin (SMA), calponin, caldesmon, CD10, CD29, S100 protein, glial fibrillary acidic protein (GFAP) and p63 in myoepithelial cells during salivary gland morphogenesis to understand the maturation process of these cells and their possible use in the diagnosis of salivary gland lesions. Methods and results: Major and minor human salivary glands at various stages of development, derived from fetuses at 8-26 weeks of gestation, were studied immunohistochemically. Fully developed salivary glands were used as controls. The protein p63 was present in all stages of salivary gland morphogenesis from initial bud to terminal bud stage. CD29, S100 and calponin were detected increasingly as salivary gland structure matured and in fully developed salivary gland. Proteins GFAP, CD10 and caldesmon were not observed in myoepithelial cells of salivary glands. Conclusions: The proteins SMA, calponin, CD29, S100 and p63, which are present from the earliest stages of salivary gland maturation, are valuable myoepithelial markers but, although very specific, are not exclusive markers for this cell type.
Development of human minor salivary glands: expression of mucins according to stage of morphogenesis
Resumo:
The formation of salivary glands entails the proliferation of epithelial cells from the stomatodeum into the underlying ectomesenchyme, culminating in a complex network of ducts and acinar bulbs. The extent to which mucins regulate this process is unknown, but they appear to mediate luminal space formation and maturation. Our aim was to examine mucin expression patterns during the morphogenesis of human salivary glands. Mucin expression - MUC1, 2, 3, 4, 5AC, 5B, 6, and 16 - was analyzed in specimens of developing human salivary glands, obtained from fetuses at 4-24 weeks` gestation, and fully developed salivary glands by immunohistochemistry. Expression patterns were analyzed qualitatively according to the development stage of the salivary glands. Mucins 1, 3, 4, 5B, and 16 were expressed during salivary gland development - being stronger in all ductal segments by the final phases of branching morphogenesis and in mature glands. Acinar cells were negative for most mucins, including MUC1 in mature salivary glands. Mucins 2, 5AC, and 6 were not expressed. Mucins MUC1, 3, 4, 5B, and 16 are expressed in developing human salivary glands and in mature glands, suggesting important roles in the maturation and maintenance of the ductal network.
Resumo:
Ethylene is a plant hormone that is of fundamental importance to in vitro morphogenesis, but in many species, it has not been thoroughly studied. Its relationship with polyamines has been studied mainly because the two classes of hormones share a common biosynthetic precursor, S-adenosylmethionine (SAM). In order to clarify whether competition between polyamines and ethylene influences in vitro morphogenetic responses of Passiflora cincinnata Mast., a climacteric species, different compounds were used that act on ethylene biosynthesis and action, or as ethylene scavengers. Treatment with the ethylene inhibitor, aminoethoxyvinylglycine (AVG) caused a greater regeneration frequency in P. cincinnata, whereas treatment with the ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid (ACC) lessened regeneration frequencies. The data suggested that levels of polyamines and ethylene are not correlated with morphogenic responses in P. cincinnata. It was ascertained that neither the absolute ethylene and polyamine levels, nor competition between the compounds, correlated to the obtained morphogenic responses. However, sensitivity to, and signaling by, ethylene appears to play an important role in differentiation. This study reinforces previous reports regarding the requirement of critical concentrations and temporal regulation of ethylene levels for morphogenic responses. Temporal regulation also appeared to be a key factor in competition between the two biosynthetic pathways, without having any effects on morphogenesis. Further studies investigating the silencing or overexpression of genes related to ethylene perception, under the influence of polyamines in cell differentiation are extremely important for the complete understanding of this process.
Resumo:
Rationale: Major coronary vessels derive from the proepicardium, the cellular progenitor of the epicardium, coronary endothelium, and coronary smooth muscle cells (CoSMCs). CoSMCs are delayed in their differentiation relative to coronary endothelial cells (CoEs), such that CoSMCs mature only after CoEs have assembled into tubes. The mechanisms underlying this sequential CoE/CoSMC differentiation are unknown. Retinoic acid (RA) is crucial for vascular development and the main RA-synthesizing enzyme is progressively lost from epicardially derived cells as they differentiate into blood vessel types. In parallel, myocardial vascular endothelial growth factor (VEGF) expression also decreases along coronary vessel muscularization. Objective: We hypothesized that RA and VEGF act coordinately as physiological brakes to CoSMC differentiation. Methods and Results: In vitro assays (proepicardial cultures, cocultures, and RALDH2 [retinaldehyde dehydrogenase-2]/VEGF adenoviral overexpression) and in vivo inhibition of RA synthesis show that RA and VEGF act as repressors of CoSMC differentiation, whereas VEGF biases epicardially derived cell differentiation toward the endothelial phenotype. Conclusion: Experiments support a model in which early high levels of RA and VEGF prevent CoSMC differentiation from epicardially derived cells before RA and VEGF levels decline as an extensive endothelial network is established. We suggest this physiological delay guarantees the formation of a complex, hierarchical, tree of coronary vessels. (Circ Res. 2010;107:204-216.)
Resumo:
In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum C. DC. (Piperaceae)). Piper solmsianum is a shrub from Southeast Brazil in which many biologically active compounds were identified. The aim of this work was to establish a cell suspension culture system for this species. With this in mind, petiole and leaf explants obtained from in vitro plantlets were cultured in the presence of different plant growth regulator combinations (IAA, NAA, 2,4-D and BA). Root and indirect shoot adventitious formation, detected by histological analysis, was observed. Besides the different combinations of plant growth regulators, light regime and the supplement of activated charcoal (1.5 mg.l(-1)) were tested for callus induction and growth. Cultures maintained in light, on a 0.2 mg.l(-1) 2,4-D and 2 mg.l(-1) BA supplemented medium, and in the absence of activated charcoal, showed the highest calli fresh matter increment. From a callus culture, cell suspension cultures were established and their growth and metabolite accumulation studied. The achieved results may be useful for further characterization of the activated secondary metabolites pathways in in vitro systems of P. solmsianum.
Resumo:
Human HOX genes encode transcription factors that act as master regulators of embryonic development. They are important in several processes such as cellular morphogenesis and differentiation. The HOXB5 gene in particular has been reported in some types of neoplasm, but not in oral cancer. OBJECTIVE: The present study investigated the expression of HOXB5 in oral squamous cell carcinoma (SCC) and in non-tumoral adjacent tissues, focusing on verifying its possible role as a broad tumor-associated gene and its association with histopathological and clinical (TNM) characteristics. MATERIAL AND METHODS: RT-PCR was performed to amplify HOXB5 mRNA in 15 OSCCs and adjacent non-tumoral epithelium. A possible association with TNM and histopathologic data was verifed by the chi-square and post-hoc t-test. RESULTS: HOXB5 was amplifed in 60% non-tumoral epithelium and in 93.3% carcinomas. No statistically signifcant differences were found regarding the HOXB5 mRNA expression and TNM or histological grade. CONCLUSION: HOXB5 is expressed in OSCCs and its role in cancer progression should be further investigated.
Resumo:
O objetivo do estudo foi realizar uma análise embriológica dos roedores histricomorfos (paca, cutia, preá e capivara), a fim de comparar com a de outros roedores e com a morfogênese humana um padrão embriológico. Utilizaram-se 8 espécimes de roedores sendo, 2 embriões para cada espécie coletada, ambas em inicio de gestação. Estes foram retirados dos úteros gestantes através de ovariosalpingohisterectomia parcial, seguido de fixação em solução de paraformaldeído 4%. Para as mensurações de Crow-Rump, adotou-se como referência a crista nucal numa extremidade e da última vértebra sacral na extremidade oposta. De forma geral, os embriões analisados mostraram as seguintes características morfológicas: divisão dos arcos branquiais, o não fechamento do neuróporo cranial em alguns embriões estudados, a curvatura cranial acentuada e os somitos delimitados e individualizados. O broto dos membros apresentava-se em desenvolvimento em formato de remo, além da impressão cardíaca e fígado. Na região caudal, visualizou-se a curvatura crânio-caudal, a vesícula óptica com e sem pigmentação da retina, a abertura do tubo neural na região do quarto ventrículo encefálico, a fosseta nasal e a formação das vesículas encefálicas. Concluímos que desenvolvimento embriológico dos roedores histricomorfos pode ser comparado à morfogênese de ratos, cobaios, coelhos e humanos nos diferentes estágios de desenvolvimento, tomando apenas o cuidado com as particularidades de cada espécie, além da implementação de tecnologias reprodutivas, especialmente a de embriões, a qual requer o conhecimento do desenvolvimento pré-implantação referente às fases de desenvolvimento.
Resumo:
A qualidade de luz pode alterar a morfogênese das plantas por meio de uma série de processos mediados por receptores de luz, principalmente na região do vermelho e azul. O objetivo do presente estudo foi verificar alterações anatômicas foliares e características biométricas de Cattleya loddigesii 'Tipo', cultivadas in vitro, sob diferentes malhas coloridas com nível de radiação de 50% de sombreamento. Plântulas oriundas de autopolinização e sementes germinadas in vitro, com aproximadamente 1,0cm de comprimento e com raízes, foram inoculadas em meio WPM e submetidas a diferentes condições de incubação. Testou-se o efeito de sombrites coloridos (vermelho e azul) sobre os frascos cultivados em casa de vegetação (CV) e sala de crescimento (SC), além dos tratamentos, nos dois ambientes, sem utilização das telas coloridas. A avaliação foi efetuada 180 dias após inoculação. Com os resultados obtidos, observou-se que o ambiente de cultivo promove alterações anatômicas e biométricas em plântulas de Cattleya loddigesii 'Tipo' micropropagadas. As alterações promovidas pelo cultivo em luz natural evidenciam maior capacidade fotossintética, por meio de maior diferenciação dos tecidos clorofilianos, promovendo uma superfície foliar anatomicamente adaptada à fase de aclimatização.
Resumo:
Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 26 degrees C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were similar to 20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. Podial types were distributed in accordance to Loven's rule and the first podium of each ambulacrum was not encircled by the skeleton. Seven days after metamorphosis juveniles began to feed by rasping sand grains with the lantern. Juveniles survived in laboratory cultures for similar to 9 months and died with <500 mu m wide, a single open sphaeridium per ambulacrum, aboral anus, and no differentiated food grooves or petaloids. Tracking the morphogenesis of early juveniles is a necessary step to elucidate the developmental mechanisms of echinoid growth and important groundwork to clarify homologies between irregular urchins.
Resumo:
Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Resumo:
Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.
Resumo:
In vitro organogenesis of Citrus volkameriana and C. aurantium was studied considering three explant types: epicotyl segment, internodal segment, and hypocotyl segment with attached cotyledon fragment. The explants were cultured in medium according to Grosser and Gmitter (EME) supplemented with 0, 0.5, 1.0, 1.5, and 2.0 mg dm(- 3) 6-benzyl-aminopurine (BAP), incubated firstly in darkness for 4 weeks, and then transferred to 16-h photoperiod for 2 weeks. Comparing epicotyl and internodal segments, a higher percentage of responsive explants and a higher number of shoots per explant were obtained with epicotyl segments, regardless of the BAP concentration. For C. volkameriana the highest percentage of responsive epicotyl segments (42 %) was obtained in EME with 1.0 mg dm(-3) BAP, while for C. aurantium (59 %) in EME with 0.5 mg dm(-3) BAP. The organogenesis efficiency was the best with the use of the hypocotyl segment with attached cotyledon fragment (77 % for C. volkameriana and to 75 % for C. aurantium). With this explant the morphogenesis occurred only in the hypocotyl region. The in vitro organogenesis was characterized by histological analyses showing that the morphogenic process started in the cambium region near the explant cut end.
Resumo:
This work investigated the influence of different concentrations of calcium on the growth of plantlets of the bromeliad Aechmea blanchetiana cultured in vitro. Seedlings of A. blanchetiana were axenically cultured in liquid Murashige and Skoog basal medium supplemented with different concentrations of calcium (Ca; 1.5, 3, 4.5, 6, or 12 mM) without growth regulators. The resulting plantlets were cultured under 93 mol m-2 s-1 illumination, 12 hour photoperiod regime and 25C 1 for 120 days with subculture to fresh identical media every 30 days. The addition of calcium at 9.38 mM to MS modified medium increased the production of fresh and dry mass of plantlets, whilst chlorine from calcium chloride dehydrate (CaCl2 2 H2O) in excess (3.35 mM) decreased both the fresh and dry mass of plantlets.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
Background: The thyroid transcription factor-1 (TTF-1) is a tissue-specific transcription factor that Could playan important role in cell differentiation and morphogenesis of lung tumors. Matrix metalloproteinase-9 (MMP-9) is a protease commonly expressed in non-small cell lung cancer, conferring angiogenic and metastatic potential. Methods: We assessed TTF-1 and MMP-9 tumor expression by immunohistochemistry in 51 patients with lung adenocarcinoma, stage 11113 or IV, treated with platinum regimens. A bicategorical prognostic model was obtained using the Kaplan-Meier method, COX regression, and conjunctive consolidation. Results: The median expression of TTF-1 was 30.0% (range: 0-85.9%). All tumors expressed MMP-9 (median: 78.7%: range: 15.2-96.1%). Median survival was 41.6 weeks, with estimated 1- and 2-year survival rates of 45.0% and 22.0%, respectively. Poor performance status (Karnofsky scale) - hazards ratio(HR): 1.03. 95% confidence interval (CI): 1.01-1.06: low TTF-1 expression (<40%) - FIR: 4.00, 95% CI: 1.75-9.09: and high MMP-9 expression (>= 80%) - HR: 2.82, 95% CI: 1.30-6.08 were independent prognostic factors. Patients could be stratified in three death risk groups according to markers expression: low risk (high TTF-1 and low MMP-9; median survival: 127.6 weeks), intermediate risk (low TTF-1 OF high MMP-9; median survival: 39.0 weeks): and high risk (low TTF-1 and high MMP-9: median survival: 16.4 weeks). Conclusion: TTF-1 and MMP-9 tumor expression as detected by immunohistochemistry may allow identification of different, clinically meaningful, prognostic groups of advanced lung adenocarcinoma patients treated with platinum regimens. (C) 2008 Elsevier Ireland Ltd. All rights reserved.