153 resultados para MICROCHIP ELECTROPHORESIS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we describe a rapid and reliable process to bond channels fabricated in glass substrates. Glass channels were fabricated by photolithography and wet chemical etching. The resulting channels were bonded against another glass plate containing a 50-mu m thick PDMS layer. This same PDMS layer was also used to provide the electrical insulation of planar electrodes to carry out capacitively coupled contactless conductivity detection. The analytical performance of the proposed device was shown by using both LIF and capacitively coupled contactless conductivity detection systems. Efficiency around 47 000 plates/m was achieved with good chip-to-chip repeatability and satisfactory long-term stability of EOF. The RSD for the EOF measured in three different devices was ca. 7%. For a chip-to-chip comparison, the RSD values for migration time, electrophoretic current and peak area were below 10%. With the proposed approach, a single chip can be fabricated in less than 30 min including patterning, etching and sealing steps. This fabrication process is faster and easier than the thermal bonding process. Besides, the proposed method does not require high temperatures and provides excellent day-to-day and device-to-device repeatability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 mu m/12 mu m). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 mu m width and 750 gm gap between them. The best results were recorded with a frequency of 400 kHz and 10 V-PP using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 mu m wide x 6 mu m deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13 000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 mu mol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work three capillary columns, one with uncoated inner wall and two with covalently-bound internal coatings - poly(vinyl alcohol) (PVA) and poly(dimethylacrylamide) (PDMA) - both covalently covered - were used to separate DNA fragments and compared to DNA separation using replaceable polymer solutions. The separations were performed using hydroxyethylcellulose (HEC) (90-105 kDa) in concentrations ranging from 0.00 to 2.00% m/v. The results indicated that the separation efficiency was higher in the PVA capillary than in the PDMA in all evaluated concentrations of HEC. In addition, higher resolution was also observed in PVA-coated capillary since in PDMA the shape of the peaks was not reproducible when subsequent runs were performed. Contrary to what has previously been reported in the literature, no reasonable separation was possible in bare fused silica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluates the possibility of eliminating the purification steps involved in the characterization of HA by capillary zone electrophoresis (CZE). The HAs of various sources were analyzed, showing different electropherograms by CZE, which depend on the charge and size of HA. The data suggest that the purification of the sample is not necessary to characterize HAs. Based on the results, CZE showed to be a promising tool to characterize HA of different origins without the purification step of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although H(+) and OH(-) are the most common ions in aqueous media, they are not usually observable in capillary electrophoresis (CE) experiments, because of the extensive use of buffer solutions as the background electrolyte. In the present work, we introduce CE equipment designed to allow the determination of such ions in a similar fashion as any other ion. Basically, it consists of a four-compartment piece of equipment for electrolysis-separated experiments (D. P. de Jesus et at, Anal. Chem., 2005, 77, 607). In such a system, the ends of the capillary are placed in two reservoirs, which are connected to two other reservoirs through electrolyte-filled tubes. The electrodes of the high-voltage power source are positioned in these reservoirs. Thus, the electrolysis products are kept away from the inputs of the capillary. The detection was provided by two capacitively coupled contactless conductivity detectors (CD), each one positioned about 11 cm from the end of the capillary. Two applications were demonstrated: titration-like procedures for nanolitre samples and mobility measurements. Strong and weak acids (pK(a) < 5), pure or mixtures, could be titrated. The analytical curve is linear from 50 mu M up to 10 mM of total dissociable hydrogen (r = 0.99899 for n =10) in 10-nL samples. By including D(2)O in the running electrolyte, we could demonstrate how to measure the mixed proton/deuteron mobility. When H(2)O/D(2)O (9 : 1 v/v) was used as the solvent, the mobility was 289.6 +/- 0.5 x 10(-5) cm(2) V(-1) s(-1). Due to the fast conversion of the species, this value is related to the overall behaviour of all isotopologues and isotopomers of the Zundel and Eigen structures, as well as the Stokesian mobility of proton and deuteron. The effect of neutral (o-phenanthroline) and negatively charged (chloroacetate) bases and aprotic solvent (DMSO) over the H(+) mobility was also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and easy approach to produce polymeric microchips with integrated copper electrodes for capacitively coupled contactless conductivity detection (CD) is described. Copper electrodes were fabricated using a printed circuit board (PCB) as an inexpensive thin-layer of metal. The electrode layout was first drawn and laser printed on a wax paper sheet. The toner layer deposited on the paper sheet was thermally transferred to the PCB surface working as a mask for wet chemical etching of the copper layer. After the etching step, the toner was removed with an acetonitrile-dampened cotton. A poly(ethylene terephthalate) (PET) film coated with a thin thermo-sensitive adhesive layer was used to laminate the PCB plate providing an insulator layer of the electrodes to perform CID measurements. Electrophoresis microchannels were fabricated in poly(dimethylsiloxane) (PDMS) by soft lithography and reversibly sealed against the PET film. These hybrid PDMS/PET chips exhibited a stable electroosmotic mobility of 4.25 +/- 0.04 x 10(-4) V cm(-2) s(-1), at pH 6.1, over fifty runs. Efficiencies ranging from 1127 to 1690 theoretical plates were obtained for inorganic cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.