33 resultados para Luteinizing-hormone Receptor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological conditions of low leptin levels like those observed during negative energy balance are usually characterized by the suppression of luteinizing hormone (LH) secretion and fertility. Leptin administration restores LH levels and reproductive function. Leptin action on LH secretion is thought to be mediated by the brain. However, the neuronal population that mediates this effect is still undefined. The hypothalamic ventral premammillary nucleus (PMV) neurons express a dense concentration of leptin receptors and project to brain areas related to reproductive control. Therefore, we hypothesized that the PMV is well located to mediate leptin action on LH secretion. To test our hypothesis, we performed bilateral excitotoxic lesions of the PMV in adult female rats. PMV-lesioned animals displayed a clear disruption of the estrous cycle, remaining in anestrus for 15-20 d. After apparent recovery of cyclicity, animals perfused in the afternoon of proestrus showed decreased Fos immunoreactivity in the anteroventral periventricular nucleus and in gonadotropin releasing hormone neurons. PMV-lesioned animals also displayed decreased estrogen and LH secretion on proestrus. Lesions caused no changes in mean food intake and body weight up to 7 weeks after surgery. We further tested the ability of leptin to induce LH secretion in PMV-lesioned fasted animals. We found that complete lesions of the PMV precluded leptin stimulation of LH secretion on fasting. Our findings demonstrate that the PMV is a key site linking changing levels of leptin and coordinated control of reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor kappa B ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers` expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TR alpha and TR beta. Several pharmacological effects mediated by TR beta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TR beta activation may elicit these effects while maintaining an acceptable safety profile, To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics. Statistically reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models were obtained using the comparative molecular field analysis (CoMFA) method, and the visual analyses of the contour maps drew attention to a number of possible opportunities for the development of analogs with improved affinity and selectivity. Furthermore, the 3D-QSSR analysis allowed the identification of a novel and previously unmentioned halogen bond, bringing new insights to the mechanism of activity and selectivity of thyromimetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH(3)). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH(3), increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH(3.) We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To shed more light on the molecular requirements for recognition of thyroid response elements (TRES) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This wits done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTR beta DBD (DNA binding domain) and hTR beta DBD-LBD (DNA binding and ligand binding domains) for specific TRES. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TRES but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine system plays a major role in the control of reproductive functions which are regulated by the hypothalamus-pituitary-gonad axis and its interactions. FSH and LH receptor genes are expressed at the gonads and GnRH receptor gene is expressed at the anterior pituitary gland. Misense mutations of the FSH, LH or GnRH receptors, activating or inactivating their functions in mammals, are potentially useful to allow the understanding of the role of this group of gonadotropins in reproductive phenotypes as early puberty and birth interval length. In the present study, polymorphisms in bovine exon 11 and 3`UTR of LHR, exon 10 and 3`UTR of FSHR and GnRHR genes were characterized with some of them resulting in changes in the aminoacidic chain. These polymorphic sites were found in a Bos taurus indicus (Nellore) female population by means of PCR-SSCP and DNA sequencing. Association between nucleotidic/aminoacidic changes and early puberty were determined by Chi-square analysis. It was found association between FSHR 3`UTR polymorphisms at position 2181, 2248 and 2249 bp and early puberty phenotype (p < 0.05). The presence of these new molecular markers might be considered in further studies to validate its correlation with early puberty or other reproduction associated phenotypes in cattle breeds. (C) 2007 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Besides the effects on peripheral energy homeostasis, insulin also has an important role in ovarian function. Obesity has a negative effect on fertility, and may play a role in the development of the polycystic ovary syndrome in susceptible women. Since insulin resistance in the ovary could contribute to the impairment of reproductive function in obese women, we evaluated insulin signaling in the ovary of high-fat diet-induced obese rats. Female Wistar rats were submitted to a high-fat diet for 120 or 180 days, and the insulin signaling pathway in the ovary was evaluated by immunoprecipitation and immunoblotting. At the end of the diet period, we observed insulin resistance, hyperinsulinemia, an increase in progesterone serum levels, an extended estrus cycle, and altered ovarian morphology in obese female rats. Moreover, in female obese rats treated for 120 days with the high-fat diet, the increase in progesterone levels occurred together with enhancement of LH levels. The ovary from high-fat-fed female rats showed a reduction in the insulin receptor substrate/phosphatidylinositol 3-kinase/AKT intracellular pathway, associated with an increase in FOXO3a, IL1B, and TNF alpha protein expression. These changes in the insulin signaling pathway may have a role in the infertile state associated with obesity. Journal of Endocrinology (2010) 206, 65-74

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the a-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vivo and in vitro assays were performed with S91 murine melanoma cells aiming to investigate the effects of testosterone and photoperiod on tumor growth and melanogenesis (tyrosinase activity). In vivo assays were performed by inducing melanoma tumors in castrated mice receiving increasing concentrations of testosterone and submitted to varying photoperiod regimens. The results demonstrated that the increase of melanin content was higher in animals submitted to the longest days, thus demonstrating the importance of photoperiod length in melanin synthesis. Increase in tumor growth and protein content was observed in testosterone-treated animals submitted to 12L:12D; in testosterone-treated animals submitted to 4L:20D and 20L:4D tumor growth was significantly smaller. In S91 cultured cells, testosterone increased cell proliferation and reduced tyrosinase activity in a dose-dependent manner. Radioactive binding assays demonstrated that the hormone was acting through low affinity testosterone receptors, since the presence of aromatase inhibitor did not affect the binding assay in a statistically significant way, and all the in vitro experiments were performed in the presence of the inhibitor. Our in vivo data added to the in vitro results corroborate the hypothesis that S91 melanoma cells directly respond to testosterone and that this effect is modulated by light.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Beta-hydroxy-beta-methylbutyrate (HM beta) is a metabolite of leucine widely used for improving sports performance. Although limp is recognized to promote anabolic or anti-catabolic effects on protein metabolism, the impact of its long-term use on skeletal muscle and/or genes that control the skeletal protein balance is not fully known. This study aimed to investigate whether chronic HM beta treatment affects the activity of GH/IGF-I axis and skeletal muscle IGF-I and myostatin mRNA expression. Design: Rats were treated with HK beta (320 mg/kg BW) or vehicle, by gavage, for 4 weeks, and killed by decapitation. Blood was collected for evaluation of serum insulin, glucose and IGF-I concentrations. Samples of pituitary, liver, extensor digitorum longus (EDL) and soleus muscles were collected for total RNA or protein extraction to evaluate the expression of pituitary growth hormone (GH) gene (mRNA and protein), hepatic insulin-like growth factor I (IGF-I) mRNA, skeletal muscle IGF-I and myostatin mRNA by Northern blotting/real time-PCR, or Western blotting. Results: Chronic HM beta treatment increased the content of pituitary GH mRNA and GH, hepatic IGF-I mRNA and serum IGF-I concentration. No changes were detected on skeletal muscle IGF-I and myostatin mRNA expression. However, the HIM-treated rats although normoglycemic, exhibited hyperinsulinemia. Conclusions: The data presented herein extend the body of evidence on the potential role of HM beta-treatment in stimulating GH/IGF-I axis activity. In spite of this effect, HM beta supplementation also induces an apparent insulin resistance state which might limit the beneficial aspects of the former results, at least in rats under normal nutritional status and health conditions. (C) 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.