13 resultados para Linear Order
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions. Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in Sao Paulo City. Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by ambient temperature variation. In order to obtain better contrast between background and metallic targets it was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation between conductivity/susceptibility and temperature intending comparative studies. The correction of temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as well deeper targets were also improved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
The spectral theory for linear autonomous neutral functional differential equations (FDE) yields explicit formulas for the large time behaviour of solutions. Our results are based on resolvent computations and Dunford calculus, applied to establish explicit formulas for the large time behaviour of solutions of FDE. We investigate in detail a class of two-dimensional systems of FDE. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The magnetic linear dichroism (MLD) at band-edge photon energies in the Voigt geometry was calculated for EuTe. At the spin-flop transition, MLD shows a step-like increase. Above the spin-flop transition MLD slowly decreases and becomes zero when the averaged electronic charge becomes symmetric relative to the axis of light propagation. Further increase of the magnetic field causes ferromagnetic alignment of the spins along the magnetic field direction, and MLD is recovered but with an opposite sign, and reaches maximum absolute values. These results are explained by the rearrangement of the Eu(2+) spin distribution in the crystal lattice as a function of magnetic field, due to the Zeeman interaction, demonstrating that MLD can be a sensitive probe of the spin order in EuTe, and provides information that is not accessible from other magneto-optical techniques, such as magnetic circular dichroism measurement studies.
Resumo:
In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.
Resumo:
The third-order optical susceptibility and dispersion of the linear refractive index of Er(3+)-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er(3+)-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of Er(3+)-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n(-3/2)), n being the sample size. The corrections represent an improvement over the corresponding original Rao`s score statistics, which are chi-squared distributed up to errors of order O(n(-1)). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.
Resumo:
In this paper we extend partial linear models with normal errors to Student-t errors Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data the local influence curvatures are derived and some diagnostic graphics are proposed A motivating example preliminary analyzed under normal errors is reanalyzed under Student-t errors The local influence approach is used to compare the sensitivity of the model estimates (C) 2010 Elsevier B V All rights reserved