2 resultados para Light intensities

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different light sources and power densities used on the photoactivation process may provide changes in the degree of conversion (DC%) and temperature ( T) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and T (degrees C) of the microhybrid composite resin (Filtek (TM) Z-250, 3M/ESPE) photoactivated with one argon laser and one LED (light-emitting diode) with different power densities. For the KBr pellet technique, the composite resin was placed into a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated as follows: a continuous argon laser (CW) and LED LCUs with power density values of 100, 400, 700, and 1000 mW/cm(2) for 20 s. The measurements for DC (%) were made in a FTIR spectrometer Bomen ( model MB 102, Quebec, Canada). Spectroscopy ( FTIR) spectra for both uncured and cured samples were analyzed using an accessory of the reflectance diffusion. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm(-1)). For T (degrees C), the samples were created in a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated for 20 s. The thermocouple was attached to the multimeter allowing temperature readings. The DC (%) and T (degrees C) were submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 to 50.0% ( 100 to 1000 mW/cm(2)) for an argon laser and from 41.0 to 49% (100 to 1000 mW/cm(2)) for an LED. The temperature change values varied from 1.1 to 13.1 degrees C (100 to 1000 mW/cm(2)) for an argon laser and from 1.9 to 15.0 degrees C (100 to 1000 mW/cm(2)) for an LED. The power densities showed a significant effect on the degree of conversion and changes the temperature for both light-curing units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the degree of conversion and hardness of a dental composite resin Filtek (TM) Z-350 (3M ESPE, Dental Products St. Paul, MN) photo-activated for 20 s of irradiation time with two different light guide tips, metal and polymer, coupled on blue LED Ultraled LCU (Dabi Atlante, SP, Brazil). With the metal light tip, power density was of 352 and with the polymer was of 456 mW/cm(2), respectively. Five samples (4 mm in diameter and 2mm in thickness-ISO 4049), were made for each Group evaluated. The measurements for DC (%) were made in a Nexus-470 FT-IR, Thermo Nicolet, E.U.A. Spectroscopy (FTIR). Spectra for both uncured and cured samples were analyzed using an accessory of reflectance diffuse. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300-4000 cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm(-1)) against internal standard before and after curing of the sample: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements (top and bottom surfaces) were performed in a universal testing machine (Buehler MMT-3 digital microhardness tester Lake Bluff, Illinois USA). A 50 gf load was used and the indenter with a dwell time of 30 s. The data were submitted to the test t Student at significance level of 5%. The mean values of degree of conversion for the polymer and metal light guide tip no were statistically different (p = 0.8389). The hardness mean values were no statistically significant different among the light guide tips (p = 0.6244), however, there was difference between top and bottom surfaces (p < 0.001). The results show that so much the polymer light tip as the metal light tip can be used for the photo-activation, probably for the low quality of the light guide tip metal.