6 resultados para Licania macrophylla
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The selection of candidate plus trees of desirable phenotypes from tropical forest trees and the rapid devastation of the natural environments in which these trees are found have created the need for a more detailed knowledge of the floral and reproductive biology of tropical tree species. In this article, the organogenic processes related to unisexual flower development in tropical mahogany, Swietenia macrophylla, are described. Mahogany inflorescences at different developmental stages were evaluated using scanning electron microscopy or optical microscopy of histological sections. The unisexual flowers of S. macrophylla are usually formed in a thyrse, in which the positions of the female and male flowers are not random. Differences between male and female flowers arise late during development. Both female and male flowers can only be structurally distinguished after stage 9, where ovule primordia development is arrested in male flowers and microspore development is aborted in female flower anthers. After this stage, male and female flowers can be distinguished by the naked eye as a result of differences in the dimensions of the gynoecium. The floral characteristics of S. macrophylla (distribution of male and female flowers within the inflorescence, and the relative number of male to female flowers) have practical implications for conservation strategies of this endangered species. (c) 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 529-535.
Resumo:
The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees >= 20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha(-1). Size class frequency distributions appeared unimodal at two high-density sites, but were essentially arnodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93-95% of commercial trees (>= 45 cm diameter at the time of logging), illegally eliminated 31-47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9-37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Mahogany trees, Swietenia macrophylla, occur in open rainforest, semi deciduous and deciduous and dense rainforest of Peruvian Amazonian tropical forest. They occur, preferentially, in areas with a defined dry season, with typical phenology and seasonal variation activity, forming distinct tree-rings. The present work had as aim to determine the wood density radial variation of 14 mahogany trees, of two populations of the Peruvian Amazonian tropical forest, through the X-ray densitometry and to evaluate their application as methodology, compared to the classic method of measurement table, for the determination of the treering width. The radial wood apparent density of the trees profiles rendered it possible to delimit the areas of juvenile-adult wood and of the heartwood-sapwood, relative to the anatomical structure and chemical composition differences, due to the extractives and the vessels obstruction by tyloses. The mean, minimum and maximum wood apparent density of the mahogany trees for the Populations A and B were of 0.70; 0.29; 1.01 g.cm(-3) and 0.81; 0.29; 1.19 g.cm(-3), respectively. The analysis of the variance and mean test indicate differences of mean wood density among the mahogany trees of each population, probably due to the age of the trees. There was no correlation between mean wood density of mahogany trees among the two populations, as well as, between the tree-ring width and the respective mean density. The X-ray densitometry technique is an important tool in the evaluation of the radial variation of wood apparent density and the delimitation of tree-ring boundaries, with correlations of 0.94 and 0.93 in relation to measurement table, for each sampled population.
Resumo:
Xylarenones C-E (2-4), three new eremophilane sesquiterpenes, have been isolated from solid substrate cultures of a Camarops-like endophytic fungus isolated from Alibertia macrophylla. The structures were elucidated by analysis of spectroscopic data. Compounds were evaluated in subtilisin and pepsin protease assays, and compound 2 showed potent inhibitory activity against both proteases.
Resumo:
Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha(-1)) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipe (Tabebuia serratifolia and Tabebuia impetiginosa), jatoba (Hymenaea courbaril), and freijo cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare - fewer than three trees per 100 ha - but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically `rare` species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49-100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.