146 resultados para Level of processing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Circulation CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been associated with the delicate balancing between control of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P. falciparum infection, the phenotype and function of Tregs in P. vivax infection is still poorly characterized. In the current study, we demonstrated that patients with acute P. vivax infection presented a significant augmentation of circulating Tregs producing anti-inflammatory (IL-10 and TGF-beta) as well as pro-inflammatory (IFN-gamma, IL-17) cytokines, which was further positively correlated with parasite burden. Surface expression of GITR molecule and intracellular expression of CTLA-4 were significantly upregulated in Tregs from infected donors, presenting also a positive association between either absolute numbers of CD4(+)CD25(+)FoxP3(+)GITR(+) or CD4(+)CD25(+)FoxP3(+)CTLA-4(+) and parasite load. Finally, we demonstrate a suppressive effect of Treg cells in specific T cell proliferative responses of P. vivax infected subjects after antigen stimulation with Pv-AMA-1. Our findings indicate that malaria vivax infection lead to an increased number of activated Treg cells that are highly associated with parasite load, which probably exert an important contribution to the modulation of immune responses during P. vivax infection.
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Background. The live attenuated yellow fever (YF) vaccines have been available for decades and are considered highly effective and one of the safest vaccines worldwide. Methods. The impact of YF-17DD-antigens recall on cytokine profiles of YF-17DD-vaccinated children were characterized using short-term cultures of whole blood samples and single-cell flow cytometry. This study enrolled seroconverters and nonseroconverters after primovaccination (PV-PRNT(+) and PV-PRNT(-)), seroconverters after revaccination (RV-PRNT(+)), and unvaccinated volunteers (UV-PRNT(-)). Results. The analysis demonstrated in the PV-PRNT(+) group a balanced involvement of pro-inflammatory/regulatory adaptive immunity with a prominent participation of innate immunity pro-inflammatory events (IL-12(+) and TNF-alpha(+) NEU and MON). Using the PV-PRNT(+) cytokine signature as a reference profile, PV-PRNT(+) presented a striking lack of innate immunity proinflammatory response along with an increased adaptive regulatory profile (IL-4(+) CD4(+) T cells and IL-10(+) and IL-5(+) CD8(+) T cells). Conversely, the RV-PRNT(+) shifted the overall cytokine signatures toward an innate immunity pro-inflammatory profile and restored the adaptive regulatory response. Conclusions. The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUM+), whereas a polarized regulatory response was observed in PV-PRNT(-) and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGH+).
Resumo:
Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort. (JINS, 2011, 17, 485-493)
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.
Resumo:
The processing of fish roe leads to changes in its chemical composition, the extent of which depends on the techniques and additives employed. This study aimed to investigate the effects of ripening temperature and the use of sodium benzoate and citric acid on the quality of ripened cod roe, with respect to the contents of volatile base nitrogen (VBN), trimethylamine (TMA), biogenic amines (BA) and on the lipid composition. In comparison with fresh roes, ripened roes presented higher contents of VBN, TMA, BA and the proportion of free fatty acids regardless of the temperature and additives used during the ripening process. The greatest increases were observed in the samples ripened at 17 degrees C without additives, in which histamine was detected at 8.8 mg/100 g. A low ripening temperature was the main factor responsible for minimising changes in the cod roe composition. The addition of sodium benzoate as a preservative or citric acid to decrease the pH value had a significant effect in maintaining the quality of the cod roes, mainly at high ripening temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
This investigation examined the impact of a 17-d training period (that included basketball-specific training, sprints, intermittent running exercises, and weight training, prior to an international championship competition) on salivary immunoglobulin A (SIgA) levels in 10 subjects (athletes and staff members) from a national basketball team, as a biomarker for mucosal immune defence. Unstimulated saliva samples were collected at rest at the beginning of the preparation for the Pan American Games and 1 d before the first game. The recovery interval from the last bout of exercise was 4 h. The SIgA level was measured using enzyme-linked immunosorbent assay and expressed as absolute concentrations, secretion rate, and SIgA level relative to total protein. The decrease in SIgA levels following training was greater in athletes than in support staff; however, no significant differences between the two groups were detected. A decrease in SIgA level, regardless of the method used to express IgA results, was verified for athletes. Only one episode of upper respiratory tract illness symptoms was reported, and it was not associated with changes in SIgA levels. In summary, a situation of combined stress for an important championship was found to decrease the level of SIgA-mediated immune protection at the mucosal surface in team members, with greater changes observed in the athletes.
Resumo:
Mixed martial arts (MMA) have become a fast-growing worldwide expansion of martial arts competition, requiring high level of skill, physical conditioning, and strategy, and involving a synthesis of combat while standing or on the ground. This study quantified the effort-pause ratio (EP), and classified effort segments of stand-up or groundwork development to identify the number of actions performed per round in MMA matches. 52 MMA athletes participated in the study (M age = 24 yr., SD = 5; average experience in MMA = 5 yr., SD = 3). A one-way analysis of variance with repeated measurements was conducted to compare the type of action across the rounds. A chi-squared test was applied across the percentages to compare proportions of different events. Only one significant difference (p < .05) was observed among rounds: time in groundwork of low intensity was longer in the second compared to the third round. When the interval between rounds was not considered, the EP ratio (between high-intensity effort to low-intensity effort plus pauses) WE S 1:2 to 1:4. This ratio is between ratios typical for judo, wrestling, karate, and taekwondo and reflects the combination of ground and standup techniques. Most of the matches ended in the third round, involving high-intensity actions, predominantly executed during groundwork combat.
Resumo:
The aim of this study was to examine the influence of the performance level of athletes on pacing strategy during a simulated 10-km running race, and the relationship between physiological variables and pacing strategy. Twenty-four male runners performed an incremental exercise test on a treadmill, three 6-min bouts of running at 9, 12 and 15 km h(-1), and a self-paced, 10-km running performance trial; at least 48 h separated each test. Based on 10-km running performance, subjects were divided into terziles, with the lower terzile designated the low-performing (LP) and the upper terzile designated the high-performing (HP) group. For the HP group, the velocity peaked at 18.8 +/- A 1.4 km h(-1) in the first 400 m and was higher than the average race velocity (P < 0.05). The velocity then decreased gradually until 2,000 m (P < 0.05), remaining constant until 9,600 m, when it increased again (P < 0.05). The LP group ran the first 400 m at a significantly lower velocity than the HP group (15.6 +/- A 1.6 km h(-1); P > 0.05) and this initial velocity was not different from LP average racing velocity (14.5 +/- A 0.7 km h(-1)). The velocity then decreased non-significantly until 9,600 m (P > 0.05), followed by an increase at the end (P < 0.05). The peak treadmill running velocity (PV), running economy (RE), lactate threshold (LT) and net blood lactate accumulation at 15 km h(-1) were significantly correlated with the start, middle, last and average velocities during the 10-km race. These results demonstrate that high and low performance runners adopt different pacing strategies during a 10-km race. Furthermore, it appears that important determinants of the chosen pacing strategy include PV, LT and RE.
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.
Resumo:
Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.