137 resultados para Leukotriene B(4)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.
Resumo:
Activation of NF-kappa B and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B(4) (LTB(4)) are pivotal components of host defense and inflammatory responses. However, the role of LTB(4) in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1 beta and IL-18) are reduced in mice lacking either 5-LO or the LTB(4) receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-kappa B. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-kappa B through Stat1-dependent expression of MyD88.
Resumo:
Histoplasmosis is a pulmonary disease characterised by chronic granulomatous and suppurative inflammatory reactions caused by Histoplasma capsulatum. Regarding new therapies to control fungal infections, the aim of this study was to investigate whether pulmonary administration of leukotriene B(4) (LTB(4))-loaded microspheres (MS) could confer protection to 5-lipoxygenase knockout (5-LO(-/-)) mice infected by H. capsulatum. In this study, MS containing LTB4 were administered intranasally to mice infected by H. capsulatum. On Day 14 after the infection, fungal recovery from the lungs and histology were evaluated and inflammatory cytokines were measured. Pulmonary administration of LTB(4)-loaded MS was able to reduce fungal recovery from infected lungs. Production of important inflammatory cytokines related to host defence was augmented following MS administration to the lungs. Lung histology also showed that infected mice presented a clear reduction in the fungal burden following the pulmonary release of LTB4 from MS. Our study provides evidence that the proposed biodegradable microparticulate system, which can release LTB4 to the lungs, can be employed as therapy, enhancing the antimicrobial activity of host cells during histoplasmosis. (C) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
Background and purpose: We investigated the effect of nitric oxide synthase (NOS) inhibition on polymorphonuclear cell (PMN) influx in zymosan or lipopolysaccharide (LPS)-induced arthritis and peritonitis. Experimental approach: Wistar rats received intra-articular (i.art.) zymosan (30-1000 mu g) or LPS (1-10 mu g). Swiss C57/Bl6 mice genetically deficient in intercellular adhesion molecule-1 (ICAM-1(-/-)) or in beta(2)-integrin (beta(2)-integrin(-/-)) received zymosan either i.art. or i.p. PMN counts, leukotriene B(4) (LTB(4)), tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) levels were measured in joint and peritoneal exudates. Groups received the NOS inhibitors N(G)-nitro-L-arginine methyl ester (LN), nitro-L-arginine, N-[3-(aminomemethyl) benzyl] acetamide or aminoguanidine, prior to zymosan or LPS, given i.p. or s.c. in the arthritis and peritonitis experiments respectively. A group of rats received LN locally (i.art. or i.p.), 30 min prior to 1 mg zymosan i.art. Key results: Systemic or local NOS inhibition significantly prevented PMN migration in arthritis while increasing it in peritonitis, regardless of stimuli, concentration of NOS inhibitors and species. NOS inhibition did not alter TNF-alpha and IL-10 but decreased LTB(4) in zymosan-induced arthritis. LN administration significantly inhibited PMN influx into the joints of ICAM-1(-/-) and beta(2)-integrin(-/-) mice with zymosan-arthritis, while not altering PMN influx into the peritoneum of mice with zymosan-peritonitis. Conclusions and implications: Nitric oxide has a dual modulatory role on PMN influx into joint and peritoneal cavities that is stimulus-and species-independent. Differences in local release of LTB(4) and in expression of ICAM-1 and beta(2)-integrin account for this dual role of NO on PMN migration.
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective. To investigate the mechanism underlying neutrophil migration into the articular cavity in experimental arthritis and, by extension, human-inflammatory synovitis. Methods. Antigen-induced arthritis (AIA) was generated in mice with methylated bovine serum albumin (mBSA). Migration assays and histologic analysis were used to evaluate neutrophil recruitment to knee joints. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay. Antibodies and pharmacologic inhibitors were used in vivo to determine the role of specific disease mediators. Samples of synovial tissue and synovial fluid from rheumatoid arthritis (RA) or osteoarthritis patients were evaluated for CXCL1 and CXCL5 expression. Results. High levels of CXCL1, CXCL5, and leukotriene B-4 (LTB4) were expressed in the joints of arthritic mice. Confirming their respective functional roles, repertaxin (a CXCR1/CXCR2 receptor antagonist), anti-CXCL1 antibody, anti-CXCL5 antibody, and MK886 (a leukotriene synthesis inhibitor) reduced mBSA-induced neutrophil migration to knee joints. Repertaxin reduced LTB4 production in joint tissue, and neutrophil recruitment induced by CXCL1 or CXCL5 was inhibited by MK886, suggesting a sequential mechanism. Levels of both CXCL1 and CXCL5 were elevated in synovial fluid and were released in vitro by RA synovial tissues. Moreover, RA synovial fluid neutrophils stimulated with CXCL1 or CXCL5 released significant amounts of LTB4. Conclusion. Our data implicate CXCL1, CXCL5, and LTB4, acting sequentially, in neutrophil migration in AIA. Elevated levels of CXCL1 and CXCL5 in the synovial compartment of RA patients provide robust comparative data indicating that this mechanism plays a role in inflammatory joint disease. Together, these results suggest that inhibition of. CXCL1, CXCL5, or LTB4 may represent a potential therapeutic strategy in RA.
Resumo:
In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE Lipoxin A(4) (LXA(4)) is a lipid mediator involved in the resolution of inflammation. Increased levels of LXA(4) in synovial fluid and enhanced expression of the formyl peptide receptor 2/lipoxin A(4) receptor (FPR2/ALX) in the synovial tissues of rheumatoid arthritis patients have been reported. Endothelins (ETs) play a pivotal pro-inflammatory role in acute articular inflammatory responses. Here, we evaluated the anti-inflammatory role of LXA(4), during the acute phase of zymosan-induced arthritis, focusing on the modulation of ET-1 expression and its effects. EXPERIMENTAL APPROACH The anti-inflammatory effects of LXA(4), BML-111 (agonist of FPR2/ALX receptors) and acetylsalicylic acid (ASA) pre- and post-treatments were investigated in a murine model of zymosan-induced arthritis. Articular inflammation was assessed by examining knee joint oedema; neutrophil accumulation in synovial cavities; and levels of prepro-ET-1 mRNA, leukotriene (LT)B(4), tumour necrosis factor (TNF)-alpha and the chemokine KC/CXCL1, after stimulation. The direct effect of LXA(4) on ET-1-induced neutrophil activation and chemotaxis was evaluated by shape change and Boyden chamber assays respectively. KEY RESULTS LXA(4), BML-111 and ASA administered as pre- or post-treatment inhibited oedema and neutrophil influx induced by zymosan stimulation. Zymosan-induced preproET-1 mRNA, KC/CXCL1, LTB(4) and TNF-alpha levels were also decreased after LXA(4) pretreatment. In vitro, ET-1-induced neutrophil chemotaxis was inhibited by LXA4 pretreatment. LXA(4) treatment also inhibited ET-1-induced oedema formation and neutrophil influx into mouse knee joints. CONCLUSION AND IMPLICATION LXA(4) exerted anti-inflammatory effects on articular inflammation through a mechanism that involved the inhibition of ET-1 expression and its effects.
Resumo:
In the present study, we used the electronic version of the von Frey test to investigate the role of cytokines (TNF-alpha and IL-1 beta) and chemokines (KC/CXCL-1) in the genesis of mechanical hypernociception during antigen-induced inflammation in mice. The nociceptive test consisted of evoking a hindpaw flexion reflex with a hand-held force transducer (electronic anesthesiometer) adapted with a 0.5 mm(2) polypropylene tip. The intraplantar administration of methylated bovine serum albumin (mBSA) in previously immunized (IM), but not in sham-immunized (SI) mice, induced mechanical hypernociception in a dose-dependant manner. Hypernociception induced by antigen was reduced in animals pretreated with IL-lra and reparixin (a non-competitive allosteric inhibitor of CXCR2), and in TNF receptor type 1 deficient (TNFR1-/-) mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. Consistently, antigen challenge induced a time-dependent release of TNF-alpha, IL-1 beta and KC/CXCL-1 in IM, but not in SI, mice. The increase in TNF-alpha levels preceded the increase in IL-1 beta and KC/CXCL1. Antigen-induced release of IL-1 beta and KC/CXCL1 was reduced in TNFR1-/- mice, and TNF-alpha induced hypernociception was inhibited by IL-lra and reparixin. Hypernociception induced by IL-1 beta in immunized mice was inhibited by indomethacin, whereas KC/CXCL1-induced hypernociception was inhibited by indomethacin and guanethidine, Antigen-induced hypernociception was reduced by indomethacin and guanethidine and abolished by the two drugs combined. Together, these results suggest that inflammation associated with an adaptive immune response induces hypernociception that is mediated by an initial release of TNF-alpha, which triggers that subsequent release of IL-1 beta and KC/CXCL1. The latter cytokines in turn stimulate the release of the direct-acting final mediator, prostanoids and sympathetic amines. (C) 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.
Resumo:
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Resumo:
particularly neutrophil chemoattraction. Herein, the role of C5a in the genesis of inflammatory hypernociception was investigated in rats and mice using the specific C5a receptor antagonist PMX53 (AcF-[OP(D-Cha)WR]). Experimental approach: Mechanical hypernociception was evaluated with a modification of the Randall-Selitto test in rats and electronic pressure meter paw test in mice. Cytokines were measured by ELISA and neutrophil migration was determined by myeloperoxidase activity. Key results: Local pretreatment of rats with PMX53 (60-180 mg per paw) inhibited zymosan-, carrageenan-, lipopolysaccharide (LPS)- and antigen-induced hypernociception. These effects were associated with C5a receptor blockade since PMX53 also inhibited the hypernociception induced by zymosan- activated serum and C5a but not by the direct-acting hypernociceptive mediators, prostaglandin E-2 and dopamine. Underlying the C5a hypernociceptive mechanisms, PMX53 did not alter the cytokine release induced by inflammatory stimuli. However, PMX53 inhibited cytokine-induced hypernociception. PMX53 also inhibited the recruitment of neutrophils induced by zymosan but not by carrageenan or LPS, indicating an involvement of neutrophils in the hypernociceptive effect of C5a. Furthermore, the C5a-induced hypernociception was reduced in neutrophil-depleted rats. Extending these findings in rats, blocking C5a receptors also reduced zymosan- induced joint hypernociception in mice. Conclusions and implications: These results suggest that C5a is an important inflammatory hypernociceptive mediator, acting by a mechanism independent of hypernociceptive cytokine release, but dependent on the presence of neutrophils. Therefore, we suggest that inhibiting the action of C5a has therapeutic potential in the control of inflammatory pain.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1 beta-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1 beta induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1 beta-induced neutrophil migration. The neutrophil migration induced by IL-1 beta is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1 beta released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1 beta. The chemotactic activity of the supernatant of IL-1 beta-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1 beta-stimulated mast cells supernatant is due to the presence of IL-1 beta and TNF-alpha, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1 beta depends upon LTB4 released by macrophages and upon IL-1 beta and TNF alpha released by mast cells.