4 resultados para LAPLACIAN
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we show the existence of multiple solutions to a class of quasilinear elliptic equations when the continuous non-linearity has a positive zero and it satisfies a p-linear condition only at zero. In particular, our approach allows us to consider superlinear, critical and supercritical nonlinearities. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study the Fucik spectrum of the Laplacian on a two-dimensional torus T(2). Exploiting the invariance properties of the domain T(2) with respect to translations we obtain a good description of large parts of the spectrum. In particular, for each eigenvalue of the Laplacian we will find an explicit global curve in the Fucik spectrum which passes through this eigenvalue; these curves are ordered, and we will show that their asymptotic limits are positive. On the other hand, using a topological index based on the mentioned group invariance, we will obtain a variational characterization of global curves in the Fucik spectrum; also these curves emanate from the eigenvalues of the Laplacian, and we will show that they tend asymptotically to zero. Thus, we infer that the variational and the explicit curves cannot coincide globally, and that in fact many curve crossings must occur. We will give a bifurcation result which partially explains these phenomena. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper proves the multiplicity of positive solutions for the following class of quasilinear problems: {-epsilon(p)Delta(p)u+(lambda A(x) + 1)vertical bar u vertical bar(p-2)u = f(u), R(N) u(x)>0 in R(N), where Delta(p) is the p-Laplacian operator, N > p >= 2, lambda and epsilon are positive parameters, A is a nonnegative continuous function and f is a continuous function with subcritical growth. Here, we use variational methods to get multiplicity of positive solutions involving the Lusternick-Schnirelman category of intA(-1)(0) for all sufficiently large lambda and small epsilon.