6 resultados para Lämsä, Riikka
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
Sensory analysis is a precise and descriptive measuring technique to quantify human responses to stimuli. Odor, one of these stimuli, is basically the result of the interaction between a chemical stimulus and the olfactory receptor system, which can be described using a number of different dimensions and measures through different sensory tests: threshold, intensity and quality. To measure fragrance performance on the skin, these parameters are very important, but the main attribute to be evaluated is substantivity, thus the importance of the sensory scale chosen to measure perception, discriminate different intensities and determine the substantivity of the fragrance. Some studies comparing the labeled magnitude scale (LMS) with other magnitude scales and their derivations showed that the use of the LMS scale to measure fragrance intensity could semantically understand the intensity of the stimulus. Tests using this scale confirmed the applicability and efficiency of the LMS. PRACTICAL APPLICATIONS The objective of this article is to review the techniques used to measure odor and fragrance intensities applied on the skin. The review shows general sensory techniques and their goals, the newest olfactory mechanism and its contribution to sensory evaluation and which attributes should be considered to measure odor. Substantivity/retentivity or longevity can be regarded as the most important attributes if you want to measure fragrance performance on the skin. Past studies showed different scales tested to measure odor, and some of them demonstrated that the labeled magnitude scale is very suitable to measure fragrance on the skin.