32 resultados para Juvenile hormone
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A fractional factorial design approach has been used to enhance secondary metabolite production by two Penicillium strains. The method was initially used to improve the production of bioactive extracts as a whole and subsequently to optimize the production of particular bioactive metabolites. Enhancements of over 500% in secondary metabolite production were observed for both P. oxalicum and P. citrinum. Two new alkaloids, citrinalins A (5) and B (6), were isolated and identified from P. citrinum cultures optimized for production of minor metabolites.
Resumo:
The noradrenergic nucleus locus coeruleus (LC) has been reported to regulate luteinising hormone (LH) secretion in female rats. Both oestrogen and progestin receptors have been demonstrated in LC neurones, suggesting that these cells are possibly responsive to variations in circulating levels of ovarian steroids. We therefore evaluated changes in the activity of LC neurones during the oestrous cycle and after ovarian-steroid treatment in ovariectomised (OVX) rats, as determined by immunoreactivity to Fos-related antigens (FRA), which comprises all of the known members of the Fos family. Effects of ovarian steroids on the firing rate of LC neurones were also determined in a slice preparation. The number of FRA/tyrosine hydroxylase (TH)-immunoreactive (ir) neurones in the LC increased from 14.00-16.00 h on pro-oestrus, coinciding with the onset of the LH surge and rise in plasma progesterone. FRA immunoreactivity was unaltered during dioestrus. Oestradiol-treated OVX rats (OVX+E) displayed marked reduction in FRA/TH-ir neurones in LC compared to oil-treated OVX rats. Accordingly, oestradiol superfusion significantly reduced the spontaneous firing rate of LC neurones in slices from OVX rats. Compared to OVX+E, oestradiol-treated rats injected with progesterone at 08.00 h (OVX+EP) exhibited higher number of FRA/TH-ir neurones in the LC at 10.00 h and 16.00 h, and great amplification of the LH surge. Bath application of progesterone significantly increased the spontaneous firing rate of OVX+E LC neurones. Our data suggest that ovarian steroids may physiologically modulate the activity of LC neurones in females, with possible implications for LH secretion. Moreover, oestradiol and progesterone appear to exert opposite and complementary effects (i.e. whereas oestradiol inhibits, progesterone, after oestradiol priming, stimulates LC activity).
Resumo:
Juvenile angiofibroma is a benign fibroangiomatous tumor of relatively rare occurrence, developing most frequently in male adolescents. It has local characteristics of aggressiveness and expansion. The treatment of choice is surgical excision. In this article, the advantages and disadvantages of the surgical technique using the Le Fort I osteotomy are described, and the literature correlated with 2 case reports.
Resumo:
In this study the baroreflex sensitivity of conscious, juvenile, spontaneously hypertensive rats (SHRs) was compared. The study population consisted of 19 eight-week-old male SHRs. The baroreflex sensitivity was quantified as the derivative of the variation in heart rate (HR) and the variation of mean arterial pressure (baroreflex sensitivity = Delta HR/Delta MAP). MAP was manipulated with sodium nitroprusside (SNP) and phenylephrine (PHE), administered via an inserted cannula in the right femoral vein. The SHRs were divided into four groups: (1) low bradycardic baroreflex (LB) where the baroreflex gain (BG) was between 0 and 1 bpm/mmHg with PHE; (2) high bradycardic baroreflex (HB), where the BG was < -1 bpm/mmHg with PHE; (3) low tachycardic baroreflex (LT) where the BC was between 0 and 3 bpm/mmHg with SNP; (4) high tachycardic baroreflex (HT) where the BG was > 3 bpm/mmHg with SNP. We noted that 36.8% of the rats presented with an increased bradycardic reflex, while 27.8% demonstrated an attenuated tachycardic reflex. No significant alterations were noted regarding the basal MAP and HR. There were significant differences in the baroreflex sensitivity between SHRs in the same laboratory. One should be careful when interpreting studies employing the SHR as a research model.
Resumo:
There are several different milking management systems in Latin America, because Gir cattle are reputed to be easily stressed and not well adapted to machine-milking. This paper, therefore, provides an overview of hormone release and behavior during suckling and milking in Gir cows and their crossbred offspring. Several experiments were performed to study oxytocin release during exclusive suckling or exclusive hand- and machine-milking, oxytocin, and prolactin release during a mixed suckling-milking system and oxytocin release after weaning. Cortisol concentrations and behavior were also examined. Concentration of oxytocin, released during suckling, and both types of milking were high, but the maximum concentration measured during suckling was significantly greater than that observed during exclusive milking. In the mixed suckling-milking system, the greatest oxytocin and prolactin releases were measured during suckling. Cortisol concentrations measured before, during, and after milking demonstrated that Gir x Holstein and Holstein cows were not stressed. On the other hand, although Gir had greater concentrations of cortisol, the percentage of residual milk for Gir cows was less than for dairy cows exposed to different stressful situations. In general, Gir cows and their crossbred offspring adapted to machine-milking, although these breeds can react negatively to milkers. Gir, Gir x Holstein, and Holstein cows all had similar cortisol levels during and after milking.
Resumo:
Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, (14)C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using (14)C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and (14)C dating suggest that rings in our study species are formed annually.
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
Catasetum fimbriatum plants cultivated in the absence of light exhibit continuous shoot growth leading to the formation of nodes and internodes. On the other hand, when these plants are incubated in the presence of light, shoot longitudinal growth is inhibited and pseudobulbs develop just below the shoot apical meristem. These facts provide evidence of a possible influence of light on mitotic cell division in the shoot apex as well as on pseudobulb initiation. The effects of light and dark on the interruption and/or maintenance of shoot apex mitotic activity and the subsequent formation of pseudobulbs in the sub-meristematic regions were investigated by means of histological and hormonal studies. The interruption of shoot apex development occurred around the 150th d of light incubation and seems to have resulted from the establishment of a strong storage sink in the region of the future pseudobulb, in detriment to the continuous activity of the shoot apical meristem. The reduced total cytokinins/IAA ratio in the apex, mainly due to high levels of IAA, could be a key factor in the interruption of cell divisions. Transfer to the dark brings about the resumption of shoot apex development of plants through the re-entrance of cells in the cell cycle which coincides with a significant increase in the total cytokinins/IAA ratio. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Phacellophora camtschatica has long been assigned to the semaeostome scyphozoan family Ulmaridae. Early stages (scyphistomae, strobilae, ephyrae, postephyrae, and young medusae) of the species were compared with those of several other semaeostomes currently assigned to Ulmaridae, Pelagiidae, and Cyaneidae. Juveniles of P. camtschatica did not strictly conform with characters of those of any of these families, and appeared intermediate between Cyaneidae and Ulmaridae. A new family, Phacellophoridae, is proposed to accommodate P. camtschatica.
Resumo:
Purpose of review Description of the progress about the vascular effects promoted by thyroid hormones. Recent findings Over the past few years, a number of studies have shown that in addition to genomic effects on blood vessels, thyroid hormones exert extranuclear nongenomic effects on vascular smooth muscle cells and endothelium. These nongenomic effects occur rapidly and do not involve thyroid hormone response elements-mediated transcriptional events. In this context, the genomic and nongenomic events promoted by thyroid hormones act in concert to control the vascular hemodynamic and regulate the cardiovascular function. Summary Considering the antiatherogenic property of thyroid hormones and the rapid effects produced by this molecule as a vasodilator, including that in the coronary bed, a better understanding of the molecular mechanisms involved in its action may contribute to the development of drugs that can be clinically used to increase the known benefits promoted by thyroid hormones in cardiovascular physiology.
Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes
Resumo:
Aims Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. Methods and results NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO(2)) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 mu M). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. Conclusion Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Resumo:
Lactation is an energy-demanding process characterized by massive food and water consumption, cessation of the reproductive cycle and induction of maternal behavior. During lactation, melanin-concentrating hormone (MCH) mRNA and peptide expression are increased in the medial preoptic area (MPO) and in the anterior paraventricular nucleus of the hypothalamus. Here we show that MCH neurons in the MPO coexpress the GABA synthesizing enzyme GAD-67 mRNA. We also show that MCH neurons in the MPO of female rats are innervated by neuropeptides that control energy homeostasis including agouti-related protein (AgRP), alpha-melanocyte stimulating hormone (alpha MSH) and cocaine- and amphetamine-regulated transcript (CART). Most of these inputs originate from the arcuate nucleus neurons. Additionally, using injections of retrograde tracers we found that CART neurons in the ventral premammillary nucleus also innervate the MPO. We then assessed the projections of the female MPO using injections of anterograde tracers. The MPO densely innervates hypothalamic nuclei related to reproductive control including the anteroventral periventricular nucleus, the ventrolateral subdivision of the ventromedial nucleus (VMHvl) and the ventral premammillary nucleus (PMV). We found that the density of MCH-ir fibers is increased in the VMHvl and PMV during lactation. Our findings suggest that the expression of MCH in the MPO may be induced by changing levels of neuropeptides involved in metabolic control. These MCH/GABA neurons may, in turn, participate in the suppression of cyclic reproductive function and/or sexual behavior during lactation through projections to reproductive control sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Physiological conditions of low leptin levels like those observed during negative energy balance are usually characterized by the suppression of luteinizing hormone (LH) secretion and fertility. Leptin administration restores LH levels and reproductive function. Leptin action on LH secretion is thought to be mediated by the brain. However, the neuronal population that mediates this effect is still undefined. The hypothalamic ventral premammillary nucleus (PMV) neurons express a dense concentration of leptin receptors and project to brain areas related to reproductive control. Therefore, we hypothesized that the PMV is well located to mediate leptin action on LH secretion. To test our hypothesis, we performed bilateral excitotoxic lesions of the PMV in adult female rats. PMV-lesioned animals displayed a clear disruption of the estrous cycle, remaining in anestrus for 15-20 d. After apparent recovery of cyclicity, animals perfused in the afternoon of proestrus showed decreased Fos immunoreactivity in the anteroventral periventricular nucleus and in gonadotropin releasing hormone neurons. PMV-lesioned animals also displayed decreased estrogen and LH secretion on proestrus. Lesions caused no changes in mean food intake and body weight up to 7 weeks after surgery. We further tested the ability of leptin to induce LH secretion in PMV-lesioned fasted animals. We found that complete lesions of the PMV precluded leptin stimulation of LH secretion on fasting. Our findings demonstrate that the PMV is a key site linking changing levels of leptin and coordinated control of reproduction.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Resumo:
We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85 alpha/55 alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85 alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55 alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect. (Endocrinology 150: 2080-2086, 2009)