4 resultados para Job Insecurity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
To test the association between night work and work ability, and verify whether the type of contractual employment has any influence over this association. Permanent workers (N = 642) and workers with precarious jobs (temporary contract or outsourced; N = 552) were interviewed and filled out questionnaires concerning work hours and work ability index. They were classified into: never worked at night, ex-night workers, currently working up to five nights, and currently working at least six nights/2-week span. After adjusting for socio-demography and work variables, current night work was significantly associated with inadequate WAI (vs. day work with no experience in night work) only for precarious workers (OR 2.00, CI 1.01-3.95 and OR 1.85, CI 1.09-3.13 for those working up to five nights and those working at least six nights in 2 weeks, respectively). Unequal opportunities at work and little experience in night work among precarious workers may explain their higher susceptibility to night work.
Resumo:
In 2004 the National Household Survey (Pesquisa Nacional par Amostras de Domicilios - PNAD) estimated the prevalence of food and nutrition insecurity in Brazil. However, PNAD data cannot be disaggregated at the municipal level. The objective of this study was to build a statistical model to predict severe food insecurity for Brazilian municipalities based on the PNAD dataset. Exclusion criteria were: incomplete food security data (19.30%); informants younger than 18 years old (0.07%); collective households (0.05%); households headed by indigenous persons (0.19%). The modeling was carried out in three stages, beginning with the selection of variables related to food insecurity using univariate logistic regression. The variables chosen to construct the municipal estimates were selected from those included in PNAD as well as the 2000 Census. Multivariate logistic regression was then initiated, removing the non-significant variables with odds ratios adjusted by multiple logistic regression. The Wald Test was applied to check the significance of the coefficients in the logistic equation. The final model included the variables: per capita income; years of schooling; race and gender of the household head; urban or rural residence; access to public water supply; presence of children; total number of household inhabitants and state of residence. The adequacy of the model was tested using the Hosmer-Lemeshow test (p=0.561) and ROC curve (area=0.823). Tests indicated that the model has strong predictive power and can be used to determine household food insecurity in Brazilian municipalities, suggesting that similar predictive models may be useful tools in other Latin American countries.
Resumo:
In this paper we consider the programming of job rotation in the assembly line worker assignment and balancing problem. The motivation for this study comes from the designing of assembly lines in sheltered work centers for the disabled, where workers have different task execution times. In this context, the well-known training aspects associated with job rotation are particularly desired. We propose a metric along with a mixed integer linear model and a heuristic decomposition method to solve this new job rotation problem. Computational results show the efficacy of the proposed heuristics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.