39 resultados para Insulin chain B

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 mu M) concentrations of forskolin, respectively. The expression of GLP-1 receptors in a cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on a cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates a cell electrical activity, increases [Ca(2+)] enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP]). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP],.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to their expected effects on lipid profile, lipid-lowering agents may reduce cardiovascular events because of effects on nonclassic risk factors such as insulin resistance and inflammation. Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol as well as plant sterols. Although it is known that an additional reduction of low-density lipoprotein cholesterol (LDL-C) levels can be induced by the combination of ezetimibe with statins, it is not known if this can enhance some pleiotropic effects, which may be useful in slowing the atherosclerotic process. This study assessed the effects of simvastatin and ezetimibe, in monotherapy or in combination, on markers of endothelial function and insulin sensitivity. Fifty prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia were randomly allocated to 2 groups receiving either ezetimibe (10 mg/d) or simvastatin (20 mg/d) for 12 weeks, after which the drugs were combined for both groups for an additional 12-week period. Clinical and laboratory parameters were measured at baseline and after 12 and 24 weeks of therapy. Homeostasis model assessment of insulin resistance index and the area under the curve of insulin were calculated. As expected, both groups receiving drugs in isolation significantly reduced total cholesterol, LDL-C, apolipoprotein B, and triglyceride levels; and additional reductions were found after the combination period (P <.05). After 12 weeks of monotherapy, plasminogen activator inhibitor-1 levels and urinary albumin excretion were lower in the simvastatin than in the ezetimibe group. No change in homeostasis model assessment of insulin resistance index, area under the curve of insulin, and adiponectin levels was observed tiller either the monotherapies or the combined therapy. However, simvastatin combined with ezetimibe provoked significant reductions in E-selectin and intravascular cellular adhesion molecule-1 levels that were independent of LDL-C changes. Our findings support claims that simvastatin may be beneficial in preserving endothelial function in prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia. Alternatively, a deleterious effect of ezetimibe on the endothelial function is suggested, considering the increase in intravascular cellular adhesion molecule I and E-selectin levels. Simvastatin and ezetimibe, in isolation or in combination, do not interfere with insulin sensitivity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory tract infections in infants and children. Rapid diagnosis is required to permit appropriate care and treatment and to avoid unnecessary antibiotic use. Reverse transcriptase (RT-PCR) and indirect immunofluorescence assay (IFA) methods have been considered important tools for virus detection due to their high sensitivity and specificity. In order to maximize use-simplicity and minimize the risk of sample cross-contamination inherent in two-step techniques, a RT-PCR method using only a single tube to detect HRSV in clinical samples was developed. Nasopharyngeal aspirates from 226 patients with acute respiratory illness, ranging from infants to 5 years old, were collected at the University Hospital of the University of Sao Paulo (HU-USP), and tested using IFA, one-step RT-PCR, and semi-nested RT-PCR. One hundred and two (45.1%) samples were positive by at least one of the three methods, and 75 (33.2%) were positive by all methods: 92 (40.7%) were positive by one-step RT-PCR, 84 (37.2%) by IFA, and 96 (42.5%) by the semi-nested RT-PCR technique. One-step RT-PCR was shown to be fast, sensitive, and specific for RSV diagnosis, without the added inconvenience and risk of false positive results associated with semi-nested PCR. The combined use of these two methods enhances HRSV detection. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression. E2 (similar to 200 nM) for 7 days decreased sensitivity, reducing similar to 30% GLUT4 mRNA and protein (P< 0.05) and plasma membrane expression in muscle; (2) the expression of ER alpha and ER beta in L6 myotubes, showing that both coexpress in the same nucleus; (3) effects of E2 on GLUT4 in L6, showing a time- and dose-dependent response. High concentration (100 nM) for 6 days reduced similar to 25% GLUT4 mRNA and protein (P < 0.05). Concluding, E2 regulates GLUT4 in muscle, and at high concentrations, such as in pregnancy, reduces GLUT4 expression and, in vivo, decreases insulin sensitivity. Thus, hyperestrogenism may be involved in the pregnancy-induced insulin resistance and/or gestational diabetes. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Glimepiride, a low-potency insulin secretagogue, is as efficient on glycaemic control as other sulphonylureas, suggesting an additional insulin-sensitizer role. The aim of the present study was to confirm the insulin-sensitizer role of glimepiride and to show extra-pancreatic effects of the drug. Methods: Three-month-old monosodium glutamate (MSG)-induced obese insulin-resistant rats were treated (OG) or not treated (O) with glimepiride for 4 weeks and compared with age-matched non-obese rats (C). Insulin sensitivity in whole body, glucose transporter 4 (GLUT4) protein content, glucose uptake and glycogen synthesis in oxidative skeletal muscle and phospho-glycogen synthase kinase (p-GSK3) and glycogen content in liver were analysed. Results: Insulin sensitivity, analysed by the insulin tolerance test, was 30% lower in O than in C rats (p < 0.05), and OG rats recovered this parameter (p < 0.05). In oxidative muscle, glimepiride increased the GLUT4 protein content (50%, p < 0.001) and recovered the obesity-induced reduction (similar to 20%) of the in vitro insulin-stimulated glucose uptake and incorporation into glycogen. In liver, glimepiride increased p-GSK3 (p < 0.01) and glycogen (p < 0.05) contents. Conclusion: The increased GLUT4 protein expression and glucose utilization in oxidative muscle and the increased insulin sensitivity and glycogen storage in liver evidence the insulin-sensitizer effect of glimepiride, which must be important to enable the glimepiride drug to promote an efficient glycaemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal- (0.5% Na+; NS), high- (3.12% Na+; HS), or low-sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail-cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin-stimulated 2-deoxy-d-[H-3]-glucose uptake (2DGU) and conversion of -[U-C-14]-glucose into (CO2)-C-14. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole-body insulin sensitivity. A higher half-maximal effective insulin concentration (EC50) from the dose - response curve of 2DGU and an increase in the insulin-stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin-induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.