6 resultados para Implant material

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the metabolism of odontoblast-like MDPC-23 cells subjected to direct LLL irradiation. The cells were seeded (20,000 cells/well) in 24-well plates and incubated for 24 hours at 37 degrees C. After this period, the culture medium (DMEM) was replaced by fresh DMEM supplemented with 2 or 5% (stress induction by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to laser doses of 2, 4, 10, 15 and 25 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 +/- 3 nm, 40 mW). One control group (sham irradiation) was established for each experimental condition (laser dose x FBS supplementation). Three and 72 hours after the last irradiation, cells were analyzed with respect to metabolism, morphology, total protein expression and alkaline phosphatase (ALP) activity. Higher metabolism and total protein expression were observed 72 hours after the last irradiation at the doses of 15 and 25 J/cm(2) (Mann-Whitney; p<0.05). Higher ALP activity was obtained with 5% FBS when the cells were irradiated with doses of 2 and 10 J/cm(2). For the dose of 25 J/cm(2), the highest ALP activity was observed with 10% FBS. It was concluded that the LLLT parameters used in this study stimulated the metabolic activity of the MDPC-23 cells, especially at the doses of 15 and 25 J/cm(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm(2) were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO(2) at 37 degrees C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm(2) + 5% FBS; G2: 1.5 J/cm(2) + 10% FBS; G3: 5 J/cm(2) + 5% FBS; G4: 5 J/cm(2) + 10% FBS; G5: 19 J/cm(2) + 5% FBS; G6: 19 J/cm(2) + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm(2). These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-level laser therapy (LLLT), also referred to as therapeutic laser, has been recommended for a wide array of clinical procedures, among which the treatment of dentinal hypersensitivity. However, the mechanism that guides this process remains unknown. Therefore, the objective of this study was to evaluate in vitro the effects of LLL irradiation on cell metabolism (MTT assay), alkaline phosphatase (ALP) expression and total protein synthesis. The expression of genes that encode for collagen type-1 (Col-1) and fibronectin (FN) was analyzed by RT-PCR. For such purposes, oclontoblast-like cell line (MDPC-23) was previously cultured in Petri dishes (15000 cells/cm(2)) and submitted to stress conditions during 12 h. Thereafter, 6 applications with a monochromatic near infrared radiation (GaAlAs) set at predetermined parameters were performed at 12-h intervals. Non-irradiated cells served as a control group. Neither the MTT values nor the total protein levels of the irradiated group differed significantly from those of the control group (Mann-Whitney test; p > 0.05). On the other hand, the irradiated cells showed a decrease in ALP activity (Mann-Whitney test; p < 0.05). RT-PCR results demonstrated a trend to a specific reduction in gene expression after cell irradiation, though not significant statistically (Mann-Whitney test; p > 0.05). It may be concluded that, under the tested conditions, the LLLT parameters used in the present study did not influence cell metabolism, but reduced slightly the expression of some specific proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate the influence of implant positioning into extraction sockets on osseointegration. Material and methods Implants were installed immediately into extraction sockets in the mandibles of six Labrador dogs. In the control sites, the implants were positioned in the center of the alveolus, while in the test sites, the implants were positioned 0.8 mm deeper and more lingually. After 4 months of healing, the resorptive patterns of the alveolar crest were evaluated histomorphometrically. Results All implants were integrated in mineralized bone, mainly composed of mature lamellar bone. The alveolar crest underwent resorption at the control as well as at the test sites. After 4 months of healing, at the buccal aspects of the control and test sites, the location of the implant rough/smooth limit to the alveolar crest was 2 +/- 0.9 mm and 0.6 +/- 0.9 mm, respectively (P < 0.05). At the lingual aspect, the bony crest was located 0.4 mm apically and 0.2 mm coronally to the implant rough/smooth limit at the control and test sites, respectively (NS). Conclusions From a clinical point of view, implants installed into extraction sockets should be positioned approximately 1 mm deeper than the level of the buccal alveolar crest and in a lingual position in relation to the center of the alveolus in order to reduce or eliminate the exposure above the alveolar crest of the endosseous (rough) portion of the implant. To cite this article:Caneva M, Salata LA, de Souza SS, Baffone G, Lang NP, Botticelli D. Influence of implant positioning in extraction sockets on osseointegration: histomorphometric analyses in dogs.Clin. Oral Impl. Res. 21, 2010; 43-49.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation. Material and methods In six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation. Results With the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables. Conclusions After 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact. To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent studies in animals have shown pronounced resorption of buccal bone plate after immediate implantation. The sectioning of experimental material for histologic evaluation of the bone plates could provide valuable information about the possible effect of bone exposure in periodontal and implant surgeries. Methods: Twenty-four incisors were collected from dogs. After decalcification, the blocks were immersed in paraffin and bucco-lingual histologic sections were examined under light microscope. Some sections were reserved for immunohistochemical analysis. Results: The bone density, the width of the bone plates, and the percentage of vessels presented in the periodontal ligament and periosteum were analyzed in the buccal and lingual bone plates, which were divided corono-apically into thirds. The buccal bone plates showed statistically higher bone density compared to the lingual bone plates in the coronal thirds. The width of both bone plates increased from the coronal to the apical third, but all the buccal thirds were significantly thinner compared to the lingual thirds. No statistically significant differences were found between the bone plates for the percentage of area occupied by the blood vessels in the periodontal ligament or periosteum. Conclusion: It is reasonable to conclude that the higher bone density, represented by the lower number of marrow spaces, in association with the thinner aspect of the buccal bone plates made them more fragile to absorb compared to the lingual bone plates, especially during mucoperiosteal procedures. J Periodontol 2017;82:872-877.