39 resultados para Image - Narrative
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
PURPOSE: Juvenile idiopathic arthritis (JIA) has unknown etiology, and the involvement of the temporomandibular joint (TMJ) is rare in the early phase of the disease. The present article describes the use of computed tomography (CT) and magnetic resonance (MRI) images for the diagnosis of affected TMJ in JIA. CASE DESCRIPTION: A 12-year-old, female, Caucasian patient, with systemic rheumathoid arthritis and involvement of multiple joints was referred to the Imaging Center for TMJ assessment. The patient reported TMJ pain and limited opening of the mouth. The helical CT examination of the TMJ region showed asymmetric mandibular condyles, erosion of the right condyle and osteophyte-like formation. The MRI examination showed erosion of the right mandibular condyle, osteophytes, displacement without reduction and disruption of the articular disc. CONCLUSION: The disorders of the TMJ as a consequence of JIA must be carefully assessed by modern imaging methods such as CT and MRI. CT is very useful for the evaluation of discrete bone changes, which are not identified by conventional radiographs in the early phase of JIA. MRI allows the evaluation of soft tissues, the identification of acute articular inflammation and the differentiation between pannus and synovial hypertrophy.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Resumo:
Background: Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods: The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results: HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion: The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
Science education is under revision. Recent changes in society require changes in education to respond to new demands. Scientific literacy can be considered a new goal of science education and the epistemological gap between natural sciences and literacy disciplines must be overcome. The history of science is a possible bridge to link these `two cultures` and to foster an interdisciplinary approach in the classroom. This paper acknowledges Darwin`s legacy and proposes the use of cartoons and narrative expositions to put this interesting chapter of science into its historical context. A five-lesson didactic sequence was developed to tell part of the story of Darwin`s expedition through South America for students from 10 to 12 years of age. Beyond geological and biological perspectives, the inclusion of historical, social and geographical facts demonstrated the beauty and complexity of the findings that Darwin employed to propose the theory of evolution.
Resumo:
A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.
Resumo:
This paper presents a novel algorithm to successfully achieve viable integrity and authenticity addition and verification of n-frame DICOM medical images using cryptographic mechanisms. The aim of this work is the enhancement of DICOM security measures, especially for multiframe images. Current approaches have limitations that should be properly addressed for improved security. The algorithm proposed in this work uses data encryption to provide integrity and authenticity, along with digital signature. Relevant header data and digital signature are used as inputs to cipher the image. Therefore, one can only retrieve the original data if and only if the images and the inputs are correct. The encryption process itself is a cascading scheme, where a frame is ciphered with data related to the previous frames, generating also additional data on image integrity and authenticity. Decryption is similar to encryption, featuring also the standard security verification of the image. The implementation was done in JAVA, and a performance evaluation was carried out comparing the speed of the algorithm with other existing approaches. The evaluation showed a good performance of the algorithm, which is an encouraging result to use it in a real environment.
Resumo:
Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10 Am polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation. [DOI: 10.1115/1.4001252]
Resumo:
The present work reports the porous alumina structures fabrication and their quantitative structural characteristics study based on mathematical morphology analysis by using the SEM images. The algorithm used in this work was implemented in 6.2 MATLAB software. Using the algorithm it was possible to obtain the distribution of maximum, minimum and average radius of the pores in porous alumina structures. Additionally, with the calculus of the area occupied by the pores, it was possible to obtain the porosity of the structures. The quantitative results could be obtained and related to the process fabrication characteristics, showing to be reliable and promising to be used to control the pores formation process. Then, this technique could provide a more accurate determination of pore sizes and pores distribution. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Techniques applying digital images increasingly have been used in biology, medicine, physics, and other research areas. The image coordinates can represent light intensities values to be detected by a CCD. Based on this concept, a photometric system composed of a LED source and a digital camera as a detector was used for optical density measurements. Standards for permanganate, glucose, and protein solutions were detemined by colorimetric methods using our device. Samples of protein of Pasteurella mutocida bacteria membrane and, also, fractions of rabbit kidney membrane, rich in Na, K-ATPase, with unknown concentrations were dosed through the Hartree method using our photometric system.
Resumo:
What different forms of engagement do image and text allow the spectator/reader? We know that text and image communicate, and that all communication depends on a relationship between those who communicate. The objective of this text is therefore to understand the new possibilities available to an anthropology of the expression of knowledge that makes use of images, such as photographs and films.
Resumo:
With the purpose of approximating two issues, oral narrative and constructive memory, we assume that children, as well as adults, have a constructive memory. Accordingly, researchers of the constructive memory share with piagetians the vision that memory is an applied cognition. Under this perspective, understanding and coding into memory constitute a process which is considered similar to the piagetian assimilation of building an internal conceptual representation of the information (hence the term constructive memory. The objective of this study is to examine and illustrate, through examples drawn from a research about oral narrative with 5, 8 and 10 years old children, the extent to which the constructive memory is stimulated by the acquisition of the structures of knowledge or ""mental models"" (schemes of stories and scenes, scripts), and if they automatically employ them to process constructively the information in storage and rebuild them in the recovery. A sequence of five pictures from a book without text was transformed into computerized program, and the pictures were thus presented to the children. The story focuses on a misunderstanding of two characters on a different assessment about a key event. In data collection, the demands of memory were preserved, since children narrate their stories when the images were no longer viewed on the computer screen. Each narrative was produced as a monologue. The results show that this story can be told either in a descriptive level or in a more elaborated level, where intentions and beliefs are attributed to the characters. Although this study allows an assessment of the development of children`s capabilities (both cognitive and linguistic) to narrate a story, there are for sure other issues that could be exploited.