20 resultados para Hydrophilic zeolites
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigate magnetorheological fluids (MRFs) prepared with carbonyl iron powder and different types of hydrophobic and hydrophilic fumed silica. The rheological properties of the MRF suspensions were investigated with and without an applied magnetic field. The MRF samples prepared with hydrophobic silicas presented a more pronounced thixotropic effect and a higher recovery rate than those prepared with hydrophilic silicas. The application of a magnetic field to all the MRFs samples investigated leads to an increase in the viscosity and the thixotropic effect. MRF prepared with hydrophobic silicas presented smaller values of the viscosity than those prepared with hydrophilic silicas. At low applied magnetic fields, the type of the silica used to prepare the MRF leads to noticeable differences in the shear stress. However, these differences disappear at high magnetic fields. The results obtained showed that MRF samples prepared with the hydrophobic silica with the biggest particle diameter presented better characteristics for magnetorheological fluids, with higher values of yield stress, recovery rate, and elastic modulus. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3086870]
Resumo:
The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre- cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.
Resumo:
In this work, the effect of glycerol on the physical properties of edible films were identified by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared (FTIR) and microwave spectroscopy. According to XRD diffractograms, films with 0 and 15% glycerol displayed an amorphous character, and a tendency to semicrystallization, for films with 30% and 45% glycerol. From DSC thermograms, the glass transition (Tg) of the films decreased with glycerol content. However, two Tgs were observed for samples with 30% and 45% glycerol, due to a phase separation. The intensity and positions of the peaks in FTIR fingerprint region presented slight variations due to new interactions arising between glycerol and biopolymer. Microwave measurements were sensitive to moisture content in the films, due to hydrophilic nature of the glycerol. The effect of plasticizer plays, then, an important rule on the physical and functional properties of these films, for applications in food technology.
Resumo:
Proteins contain hydrophilic groups, which can bind to water molecules through hydrogen bridges, resulting in water vapour adsorption. An increase in the degree of cross-linking can be a method to improve the cohesiveness force and functional properties of protein-based films. Thus, the objective of this work was to evaluate the effect of chemical treatment of gelatin with formaldehyde and glyoxal on the mechanical properties, water vapour permeability (WVP) and water vapour sorption characteristics of gelatin-based films. Films were produced using gelatin, with and without chemical treatment. The formaldehyde treatments caused a significant increase in the tensile strength and a reduction in the WVP of films. The Guggenheim-Anderson-De Boer and Halsey models could be used to model the sorption isotherms of films. It was observed that an increase in temperature produced a decrease in water sorption, and the chemical modifications did not affect the monolayer moisture content. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.
Resumo:
We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We describe here a procedure to bridge the gap in the field of calixarene physicochemistry between solid-state atomic-resolution structural information and the liquid-state low-resolution thermodynamics and spectroscopic data. We use MD simulations to study the kinetics and energetics involved in the complexation of lower rim calix[4]arene derivatives (L), containing bidentate ester (1) and ketone (2) pendant groups, with acetonitrile molecule (MeCN) and Cd2+ and Pb2+ ions (M2+) in acetonitrile solution. On one hand, we found that the prior inclusion of MeCN into the calix to form a L(MeCN) adduct has only a weak effect in preorganizing the hydrophilic cavity toward metal ion binding. On the other hand, the strong ion-hydrophilic cavity interaction produces a wide open calix which enhances the binding of one MeCN molecule (allosteric effect) to stabilize the whole (M2+)1(MeCN) bifunctional complex. We reach two major conclusions: (i) the MD results for the (M2+)1(MeCN) binding are in close agreement with the ""endo"", fully encapsulated, metal complex found by X-ray diffraction and in vacuo MD calculations, and (ii) the MD structure for the more flexible 2 ligand, however, differs from the also endo solid-state molecule. In fact, it shows strong solvation effects at the calixarene lower bore by competing MeCN molecules that share the metal coordination sphere with the four C=O oxygens of an ""exo"" (M2+)2(MeCN) complex.
Resumo:
Confined water, such as those molecules in nanolayers of 2-3 nm in length, plays an important role in the adhesion of hydrophilic materials, mainly in cementitious ones. In this study, the effects of water containing kosmotropic substances on adhesion, known for their ability of enhancing the hydrogen bond (H-bond) network of confined water, were evaluated using mechanical strength tests. Indeed, to link adhesion provided by water confined in nanolayers to a macro-response of the cementitious samples, such as the bending strength, requires the evaluation of local water H-bond network configuration in the presence of kosmotropes, considering their influences on the extent and the strength of H-bonds. Among the kosmotropes, trimethylamine and sucrose provided a 50% increase in bending strength compared to the reference samples, the latter just using water as an adhesive, whereas trehalose was responsible for reducing the bending strength to a value close to the samples without any adhesive. The results attained opened up perspectives regarding exploring the confined water behavior which naturally occurs throughout the hydration process in cement-based materials.
Resumo:
Hybrid films from poly (methylmethacrylate) (PMMA) and dioctadecyldimethylammonium bromide (DODAB), cetyltrimethylammonium bromide (CTAB), or tetrapropylammonium bromide (TPAB) were characterized by determination of wettability, ellipsometry, atomic force microscopy, active compounds diffusion to water, X-ray photoelectron spectroscopy (XPS) with determination of atomic composition on the films surface, and biocidal activity against Pseudomonas aeruginosa or Staphylococcus aureus. QAC mobility in the films increased from DODAB to CTAB to TPAB. Diffusion and optimal hydrophobic hydrophilic balance imparted the highest bioactivity to CTAB. DODAB sustained immobilization at the film surface killed bacteria upon contact. TPAB ability to diffuse was useless because of its unfavorable hydrophobic hydrophilic balance for bioactivity.
Resumo:
This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homoss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a Suitable optical model to account for the surface properties (roughness, thickness, and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physicochemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption oil hydrophobic CNT and oil hydrophilic silica and by Modulating the ionic Strength With and without Mg(2+). The ODN adsorption process oil CNT is driven by hydrophobic interactions only when the electrostatic repulsion is Suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (nonpolar region) toward the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption oil silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT Surface due to its acid-base properties.
Resumo:
In this work, the electronic and structural characterization of polyaniline (PANI) formed in cavities of zeolites Y (ZY) and Mordenite (MOR) and montmorillonite (MMT) clay having Cu(II) as oxidant agent are presented. The formation of PANI and its structure is analyzed by Resonance Raman, UV-Vis-NIR, FT-IR and N K XANES techniques. In all cases the structure of PANT formed is different from the ""free"" polymer. The presence of azo bonds linked to phenazine-like rings are observed only for PANI-MMT composites, independent of the kind of oxidant agent employed in the synthesis. The presence of Cu(II) ions leads to the formation of Phenosafranine-like rings. The presence of these phenazine-like rings in the structure of confined PANT chains can also contribute to the enhancement of the thermal stability observed for all composites. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers
Resumo:
In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.