6 resultados para Hybrid solar power station
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
INTRODUCTION: Study of the temporal activity of malaria vectors during the implantation of a hydroelectric power station on the River Paraná, intended to generate electrical energy. The river separates the States of São Paulo and Mato Grosso do Sul, in Brazil. The objective was to verify whether alterations occurred in the wealth and diversity indices of Anopheles, following two successive floods, extended to the temporal activity and nycthemeral rhythm followed over a five year period. METHODS: Mosquito capture was performed monthly using the Human Attraction Technique and Shannon Traps. The first, executed for 24h, provided the nycthemeral rhythm and the second, lasting 15h, permitted the tracking of Anopheles during the two floods. RESULTS: The bimodal pattern of Anopheles darlingi defined before these floods was modified throughout the environment interventions. The same effect had repercussions on the populations of An albitarsis s.l., An triannulatus and An galvaoi. Activity prior to twilight was less affected by the environment alterations. CONCLUSIONS: The dam construction provoked changes in Anopheles temporal activity patterns, permitting classification of the area as an ecologically steady and unstable situation. Differences observed in Anopheles behavior due to the capture methods revealed the influence of solo and multiple attractiveness inside the populations studied.
Resumo:
A study was carried out in the area of influence of the Porto Primavera Hydroelectric Power Station, in western São Paulo State, to investigate ecological and epidemiological aspects of malaria in the area and monitor the profile of the anopheline populations following the environmental changes brought about by the construction of the lake. Mosquitoes captured were analyzed by standardized indicator species analysis (ISA) before and during different flooding phases (253 m and 257 m elevations). The local human population was studied by means of parasitological (thin/thick blood smears), molecular (PCR) and serological tests. Serological tests consisted of Enzyme Linked Immunosorbent Assay (ELISA) with synthetic peptides of the circumsporozoite protein (CSP) from classic Plasmodium vivax, P. vivax variants (VK247 and "vivax-like"), P. malariae and P. falciparum and Indirect Immunofluorescence Assay (IFA) with asexual forms of P. vivax, P. malariae and P. falciparum. The results of the entomological survey indicated that, although the Anopheles darlingi population increased after the flooding, the population density remained very low. No malaria, parasite infection or DNA was detected in the inhabitants of the study area. However, there was a low frequency of antibodies against asexual forms and a significant prevalence of antibodies against P. vivax, P. vivax variants, P. falciparum and P. malariae; the presence of these antibodies may result from recent or less recent contact with human or simian Plasmodium (a parallel study in the same area revealed the existence of a sylvatic cycle). Nevertheless, these results suggest that, as in other places where malaria is present and potential vectors circulate, the local epidemiological conditions observed could potentially support the transmission of malaria in Porto Primavera Lake if infected individuals are introduced in sufficient numbers. Further studies are required to elucidate the phenomena described in this paper.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.