94 resultados para Hybrid genome

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees) has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini). The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced). We also report the genome organization (gene content and order), gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background : In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) x Holstein (Bos taurus) cross. Results: Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions: The experimental F2 population derived from Gyr x Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results: We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions: This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity >= 2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in Sao Paulo, Brazil. Methods: A total of 36 samples were selected from 888 adult patients residing in Sao Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results: Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion: All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical trials using dendritic cells (DCs) to treat cancer patients have generated promising results in recent years. However, even simple aspects of this therapy are still not well understood, including the storage and distribution of manufactured vaccines. These processes are essential and must be elucidated in order to reduce costs. We evaluated the effects of different storage conditions on vaccine functionality using mixed lymphocyte reaction (MLR). Vaccine storage at 4 degrees C for up to 72 h had no significant effect on vaccine activity. Shipping to distant places is possible, if vaccines are kept at 4 degrees C and used up to 3 days after manufacture date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus. Results: Two thousand six hundred and forty one single nucleotide polymorphisms ( SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds. Conclusion: The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the Bos taurus and Bos indicus breeds. When the Bos indicus breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the Bos taurus breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.