124 resultados para High density polyethylene
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
High-density polyethylene resins have increasingly been used in the production of pipes for water- and gas-pressurized distribution systems and are expected to remain in service for several years, but they eventually fail prematurely by creep fracture. Usual standard methods used to rank resins in terms of their resistance to fracture are expensive and non-practical for quality control purposes, justifying the search for alternative methods. Essential work of fracture (EWF) method provides a relatively simple procedure to characterize the fracture behavior of ductile polymers, such as polyethylene resins. In the present work, six resins were analyzed using the EWF methodology. The results show that the plastic work dissipation factor, beta w(p), is the most reliable parameter to evaluate the performance. Attention must be given to specimen preparation that might result in excessive dispersion in the results, especially for the essential work of fracture w(e).
Resumo:
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.
Resumo:
Aim: Modified low-density lipoprotein (mLDL), mainly upon oxidative and enzymatic modification, is the major atherogenic lipoprotein. Conversely, high-density lipoprotein (HDL) is considered anti-atherogenic because of its ability to remove cholesterol. The aim of this work was to analyze both the influence of HDL on the uptake of mLDL and the expression of CD36 and Fc gamma I receptors on monocytic cell lines during cell differentiation. Methods: Uptake of fluorescein isothiocyanate (FITC)-conjugated LDL and FITC-conjugated mLDL, i.e., copper-oxidized LDL (oxLDL) or trypsin enzyme modified LDL (enzLDL), was analyzed, as well as the expression of CD36 and Fc gamma RI in THP-1 and U937 cells, using flow cytometry. Results: HDL inhibited the uptake of mLDL, which varied in degree depending on the cell line or type of mLDL. Further, HDL rapidly decreased CD36 and Fc gamma RI involved in the uptake of mLDL. Conclusions: We demonstrate that modified LDL promotes specific LDL receptor-independent uptake by monocytic cell lines, and that the uptake of LDL and enzLDL is less than that of oxLDL. In this process, HDL diminishes the uptake of LDL or mLDL, which may involve the down-regulation of receptors (CD36 and Fc gamma I). This regulatory process represents another way by which HDL can be anti-atherogenic and it depends on the type of modification of LDL and the stage of differentiation of monocytes to macrophages.
Resumo:
Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.
Resumo:
The effect of different precracking methods on the results of linear elastic K(Ic) fracture toughness testing with medium-density polyethylene (MDPE) was investigated. Cryogenic conditions were imposed in order to obtain valid K(Ic) values from specimens of suitable size. Most conservative K(Ic) values were obtained by slow pressing a fresh razor blade at the notch root of the specimen. Due to the low deformation level imposed on the crack tip region, the slow pressing razor blade technique also produced less scatter in fracture toughness results. It has been shown that the slow stable crack growth preceding catastrophic brittle failure during K(Ic) tests in MOPE under cryogenic conditions should not be disregarded as it has relevant physical meaning and may affect the fracture toughness results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Brazil nut (Bertholletia excelsa) of the Amazon region is consumed worldwide. It is rich in both monounsaturated fatty acids and polyunsaturated fatty acids and is known for its high selenium content. This study tested the hypothesis whether the consumption of this nut could affect the plasma lipids and apolipoproteins and some functional properties of the antiatherogenic high-density lipoprotein (HDL). Fifteen normolipidemic subjects aged 27.3 +/- 3.9 years and with body mass index of 23.8 +/- 2.8 kg/m(2) consumed 45 g of Brazil nuts per day during a 15-day period. On days 0 and 15, blood was collected for biochemical analysis, determination of HDL particle size, paraoxonase 1 activity, and lipid transfer from a lipoprotein-like nanoparticle to the HDL fraction. Brazil nut ingestion did not alter HDL, low-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-1, or apolipoprotein B concentrations. HDL particle diameter and the activity of antioxidative paraoxonase 1, mostly found in the HDL fraction, Were also unaffected. Supplementation increased the reception of cholesteryl esters (P <.05) by the HDL yet did not alter the reception of phospholipids, free cholesterol, or triacylglycerols. As expected, plasma selenium was significantly increased. However, the consumption of Brazil nuts for short duration by normolipidemic subjects in comparable amounts to those tested for other nuts did not alter serum lipid profile. The only alteration in HDL function was the increase in cholesteryl ester transfer. This latter finding may be beneficial because it would improve the nonatherogenic reverse cholesterol transport pathway. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Orange juice (OJ) is regularly consumed worldwide, but its effects on plasma lipids have rarely been explored. This study hypothesized that consumption of OJ concentrate would improve lipid levels and lipid metabolism, which are important in high-density lipoprotein (HDL) function in normolipidemic (NC) and hypercholesterolemic (HCH) subjects. Fourteen HCH and 31 NC adults consumed 750 mL/day OJ concentrate (1:6 OJ/water) for 60 days. Eight control subjects did not consume OJ for 60 days. Plasma was collected before and on the last clay for biochemical analysis and an in vitro as
Resumo:
Background Differences between women and men have been documented for both diagnostic testing and treatment in cardiology. This analysis evaluates whether low-density lipoprotein cholesterol (LDL-C) success rates according to current guidelines and high-density lipoprotein cholesterol (HDL-C) levels differ by gender in the L-TAP 2 population. Methods Patients aged >= 20 years with dyslipidemia on stable lipid-lowering therapy were assessed in 9 countries between September 2006 and April 2007. Low-density lipoprotein cholesterol goal attainment by cardiovascular risk level and region and determinants of low HDL-C were compared between genders. Results Of 9,955 patients (45.3% women) evaluated, women had a significantly lower overall LDL-C success rate than men (71.5% vs 73.7%, P = .014), due entirely to the difference in the high-risk/coronary heart disease (CHD) group (LDL-C goal <100 mg/dL, 62.6% vs 70.6%, P < .0001) Among CHD patients with >= 2 additional risk factors, only 26.7% of women and 31.5% of men (P = .021) attained the optional LDL-C goal of <70 mg/dL. High-density lipoprotein cholesterol was <50 mg/dL in 32.2% of women and <40 mg/dL in 26.8% of men (P < .0001), including 38.2% of women and 29.8% of men in the high risk/CHD group (P < .0001). Predictors of low HDL-C in women included diabetes, smoking, waist circumference, and hypertension. Conclusions Cholesterol treatment has, improved substantially since the original L-TAP a decade ago, when only 39% of women attained their LDL-C goal. However, high-risk women are undertreated compared to men, and a substantial opportunity remains to reduce their cardiovascular risk. (Am Heart J 2009; 158:860-6.)
Resumo:
Background: Beyond the first year after a heart transplant (HT) procedure, patients often develop dyslipidemias, which may be implicated in the genesis of transplant coronary heart disease. High-density lipoprotein (HDL) has a several anti-atherogenic properties, but the status of HDL in HT patients is still controversial. Nonetheless, determination of HDL cholesterol concentration is not sufficient for evaluation of the overall HDL protective role. In this study, a fundamental functional property of HDL, the ability to simultaneously receive the major lipid classes, was tested in HT patients. Methods: Twenty HT patients and 20 healthy normolipidemic subjects paired for gender, age and body mass index were studied. Blood samples were collected after 12-hour fasting for determination of plasma lipids, glucose, paraxonase I (PON 1) activity, HDL diameter and transfer of labeled lipids from an artificial nanoemulsion to HDL. Results: Plasma triglycerides (159 +/- 63 vs 94 +/- 35 mg/dl) and glucose (104 +/- 20 vs 86 +/- 10 mg/dl) were greater in HT patients than in control subjects. HDL cholesterol was lower and HDL diameter was smaller in the HT group (HDL cholesterol: 44 +/- 11 vs 55 +/- 15 mg/dl; HDL diameter: 8.8 +/- 0.6 vs 9.0 +/- 1.2 nm). PON 1 activity did not differ (87 +/- 47 vs 75 +/- 37 nmol/min/ml). The transfer rates of free cholesterol and cholesteryl esters were diminished in HT patients (HT: 8.4 +/- 1.2% and 3.8 +/- 0.6%; controls: 9.7 +/- 1.9% and 4.7 +/- 1.2%, respectively). Conclusions: The transfer of free cholesterol and cholesteryl esters to HDL is diminished in HT patients; disturbance in the ability of HDL to receive lipids may affect the anti-atherogenic properties of the lipoprotein. J Heart Lung Transplant 2009;28:1075-80. Copyright (C) 2009 by the International Society for Heart and Lung Transplantation.
Resumo:
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22] X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small a-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow a migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.